Pulse Replication and Accumulation of Eigenvalues

Motivated by pulse-replication phenomena observed in the FitzHugh--Nagumo equation, we investigate traveling pulses whose slow-fast profiles exhibit canard-like transitions. We show that the spectra of the PDE linearization about such pulses may contain many point eigenvalues that accumulate onto a union of curves as the slow scale parameter approaches zero. The limit sets are related to the absolute spectrum of the homogeneous rest states involved in the canard-like transitions. Our results are formulated for general systems that admit an appropriate slow-fast structure.

[1]  Robert Gardner,et al.  Stability analysis of singular patterns in the 1-D Gray-Scott model I: a matched asymptotics approach , 1998 .

[2]  E. Yanagida Stability of fast travelling pulse solutions of the FitzHugh—Nagumo equations , 1985 .

[3]  N. Kopell,et al.  Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .

[4]  Ohta,et al.  Self-replicating pulses and sierpinski gaskets in excitable media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  K. Palmer,et al.  Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .

[6]  Juncheng Wei,et al.  The existence and stability of spike equilibria in the one-dimensional Gray-Scott model on a finite domain , 2005, Appl. Math. Lett..

[7]  H. Engel,et al.  Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities. , 1994, Chaos.

[8]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[9]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[10]  G. Carpenter A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .

[11]  Electric field induced propagating structures in a model of spatio-temporal signalling , 2000 .

[12]  G. Flores Stability analysis for the slow traveling pulse of the Fitzhugh-Nagumo system , 1991 .

[13]  Oliver Steinbock,et al.  Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system. , 2006, Chaos.

[14]  W. A. Coppel,et al.  Dichotomies and reducibility , 1967 .

[15]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[16]  J. Guckenheimer,et al.  HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.

[17]  Björn Sandstede,et al.  Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System , 2018, SIAM J. Appl. Dyn. Syst..

[18]  Arjen Doelman,et al.  Homoclinic bifurcations at the onset of pulse self-replication , 2006 .

[19]  E. Knobloch,et al.  Homoclinic snaking: structure and stability. , 2007, Chaos.

[20]  S. Hastings ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .

[21]  de L Rijk Periodic pulse solutions to slowly nonlinear reaction-diffusion systems , 2016 .

[22]  Mustapha Tlidi,et al.  Self-Replication of Localized Vegetation Patches in Scarce Environments , 2016, Scientific Reports.

[23]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[24]  Katharina Krischer,et al.  Dissipative solitons and backfiring in the electrooxidation of CO on Pt , 2015, Scientific Reports.

[25]  Jaeger,et al.  Modulated electrochemical waves. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[27]  M. Marek,et al.  The Reversal and Splitting of Waves in an Excitable Medium Caused by an Electrical Field , 1992, Science.

[28]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[29]  James Sneyd,et al.  Traveling waves of calcium in a pancreatic acinar cells: model construction and bifurcation analysis , 2000 .

[30]  Yi Zhu,et al.  The travelling wave of Gray-Scott systems – existence, multiplicity and stability , 2017, Journal of biological dynamics.

[31]  Daishin Ueyama,et al.  A skeleton structure of self-replicating dynamics , 1997 .

[32]  Daniel Wetzel,et al.  pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems , 2012, 1208.3112.

[33]  Björn Sandstede,et al.  On the Stability of Periodic Travelling Waves with Large Spatial Period , 2001 .

[34]  Arjen Doelman,et al.  Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems , 2018, Nonlinearity.

[35]  Björn Sandstede,et al.  Stability of multiple-pulse solutions , 1998 .

[36]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[37]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[38]  Ioannis G. Kevrekidis,et al.  Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction—diffusion medium , 1999 .

[39]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[40]  Edgar Knobloch,et al.  Snakes and ladders: Localized states in the Swift–Hohenberg equation , 2007 .

[41]  Theodore Kolokolnikov,et al.  Simple PDE Model of Spot Replication in Any Dimension , 2012, SIAM J. Math. Anal..

[42]  Björn Sandstede,et al.  Fast Pulses with Oscillatory Tails in the FitzHugh-Nagumo System , 2015, SIAM J. Math. Anal..

[43]  Todd Kapitula,et al.  Stability of bright solitary-wave solutions to perturbed nonlinear Schro , 1998 .

[44]  Björn Sandstede,et al.  Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System , 2016, J. Nonlinear Sci..

[45]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[46]  Michael Rademacher,et al.  Homoclinic Bifurcation from Heteroclinic Cycles with Periodic Orbits and Tracefiring of Pulses , 2004 .

[47]  Björn Sandstede,et al.  Gluing unstable fronts and backs together can produce stable pulses , 2000 .

[48]  Björn Sandstede,et al.  Homoclinic and heteroclinic bifurcations in vector fields , 2010 .

[49]  Christopher Jones,et al.  Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .

[50]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..