Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities

In this paper, a discontinuous Galerkin least-squares finite element method is developed for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities by recasting the second-order elliptic equations as a system of first-order equations. In a companion paper (Lin in SIAM J Numer Anal 47:89–108, 2008) a similar method has been developed for problems with continuous data and shown to be well-posed, uniformly convergent, and optimal in convergence rate. In this paper the method is modified to take care of conditions that arise at interfaces and boundary singularities. Coercivity and uniform error estimates for the finite element approximation are established in an appropriately scaled norm. Numerical examples confirm the theoretical results.

[1]  Talal Rahman,et al.  Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients , 2005, Numerische Mathematik.

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[4]  CaiZhiqiang,et al.  First-Order System Least Squares for Second-Order Partial Differential Equations , 1997 .

[5]  Endre Süli,et al.  hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization , 2002, J. Sci. Comput..

[6]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[7]  Rickard Bensow,et al.  Discontinuous Least-Squares finite element method for the Div-Curl problem , 2005, Numerische Mathematik.

[8]  H.-G. Roos,et al.  A second-order scheme for singularly perturbed differential equations with discontinuous source term , 2002, J. Num. Math..

[9]  M. Stynes,et al.  A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions , 1991 .

[10]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[11]  Hans-Görg Roos,et al.  Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.

[12]  M. Stynes,et al.  An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques , 1991 .

[13]  J. Pasciak,et al.  Least-squares methods for linear elasticity based on a discrete minus one inner product , 2001 .

[14]  Zhiqiang Cai,et al.  A Weighted H(div) Least-Squares Method for Second-Order Elliptic Problems , 2008, SIAM J. Numer. Anal..

[15]  J. Tinsley Oden,et al.  Finite Elements, Mathematical Aspects. , 1986 .

[16]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[17]  Jun Zou,et al.  A mortar element method for elliptic problems with discontinuous coefficients , 2002 .

[18]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[19]  RUNCHANG LIN Discontinuous Discretization for Least-Squares Formulation of Singularly Perturbed Reaction-Diffusion Problems in One and Two Dimensions , 2008, SIAM J. Numer. Anal..

[20]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[21]  Song Wang,et al.  A parameter-uniform Schwarz method for a singularly perturbed reaction-diffusion problem with an interior layer , 2000 .

[22]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[23]  M. Larson,et al.  DISCONTINUOUS/CONTINUOUS LEAST-SQUARES FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS , 2005 .

[24]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[25]  Talal Rahman,et al.  Additive Schwarz Methods for Elliptic Mortar Finite Element Problems , 2003, Numerische Mathematik.

[26]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[27]  Thomas A. Manteuffel,et al.  First-Order System LL* (FOSLL*) for General Scalar Elliptic Problems in the Plane , 2005, SIAM J. Numer. Anal..

[28]  Thomas A. Manteuffel,et al.  First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..

[29]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[30]  Michael M. J. Proot,et al.  Analysis of a Discontinuous Least Squares Spectral Element Method , 2002, J. Sci. Comput..

[31]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[32]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[33]  M. Gunzburger,et al.  Least-Squares Finite Element Approximations to Solutions of Interface Problems , 1998 .

[34]  John J. H. Miller Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .

[35]  Thomas A. Manteuffel,et al.  Weighted-Norm First-Order System Least Squares (FOSLS) for Problems with Corner Singularities , 2006, SIAM J. Numer. Anal..

[36]  Wlodzimierz Proskurowski,et al.  A FETI-DP Preconditioner with A Special Scaling for Mortar Discretization of Elliptic Problems with Discontinuous Coefficients , 2006, SIAM J. Numer. Anal..

[37]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[38]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[39]  Iliya A. Brayanov Numerical solution of a two-dimensional singularly perturbed reaction-diffusion problem with discontinuous coefficients , 2006, Appl. Math. Comput..

[40]  Thomas A. Manteuffel,et al.  Weighted-Norm First-Order System Least-Squares (FOSLS) for Div/Curl Systems with Three Dimensional Edge Singularities , 2008, SIAM J. Numer. Anal..

[41]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[42]  Thomas A. Manteuffel,et al.  Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I , 2005, SIAM J. Numer. Anal..

[43]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[44]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[45]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[46]  J. P. Pontaza,et al.  Least-squares finite element formulations for viscous incompressible and compressible fluid flows , 2006 .

[47]  Leszek Marcinkowski Additive Schwarz Method for Mortar Discretization of Elliptic Problems with P1 Nonconforming Finite Elements , 2005 .

[48]  Stefan A. Sauter,et al.  Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients , 2006, Computing.

[49]  Zhimin Zhang,et al.  SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS , 2007 .