Angular distribution of dissociated deuterons by impact of 2-16-MeV O8+

The angular distributions of dissociated deuterons for electron capture and ionization by bare oxygen ions with energies from 2 to 16 MeV in collision with molecular deuterium targets were measured. The dependence of the differential cross sections on the alignment of the molecular axis with respect to the beam axis was determined. The results show that in the transfer ionization and transfer excitation processes, the deuterium molecules are more likely to be aligned perpendicular to the incident beam than parallel to the beam. This feature can be qualitatively interpreted as resulting from the interference of capture amplitudes from the two atomic centers. In the double ionization and ionization excitation processes, little alignment dependence was observed.

[1]  Wood,et al.  Collisional ionization and excitation of H2: Dependence on the orientation of the internuclear axis. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  Wang Yd,et al.  Orientation dependence in electron capture to arbitrary projectile n states from molecular hydrogen , 1991 .

[3]  R. Wood,et al.  Molecular orientation dependence for projectile-H2 collisions , 1991 .

[4]  Cheng,et al.  Measurement of electron capture and ionization cross sections for D2 in collision with fast O8+ ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[5]  McGuire,et al.  Impact-parameter treatment of high-velocity electron capture from diatomic molecules at fixed orientation. , 1989, Physical review. A, General physics.

[6]  Lin,et al.  Orientation-dependent atomic model for electron transfer in ion-molecule collisions: Applications to H++H2 and He2++H2. , 1989, Physical review. A, General physics.

[7]  B. Lindsay,et al.  The double ionisation of hydrogen by 5-30 keV protons , 1988 .

[8]  McGuire,et al.  Electron capture from a hydrogen molecule at a fixed orientation of the molecular axis. , 1988, Physical review. A, General physics.

[9]  B. Lindsay,et al.  The dissociative ionisation of hydrogen by 5-25 keV protons: energy spectra and angular distribution of fragment ions , 1987 .

[10]  S. Chapman,et al.  Electron capture in Ar + +H 2 collisions in the keV energy regime , 1986 .

[11]  Kimura Charge transfer in ion-molecule collisions at keV energy regime: Study of H++H , 1985, Physical review. A, General physics.

[12]  P. Richardson,et al.  Formation and dissociation of doubly ionized methane , 1985 .

[13]  Dujardin,et al.  Double photoionization of methane. , 1985, Physical review. A, General physics.

[14]  B. Saha,et al.  Charge transfer in proton-hydrogen-molecule collisions , 1981 .

[15]  B. Saha,et al.  Electron capture in H+H2 collisions , 1979 .

[16]  Y. Band p+H2 charge transfer collisions , 1974 .

[17]  R. Zare Dissociation of H2+ by Electron Impact: Calculated Angular Distribution , 1965 .

[18]  G. Dunn,et al.  Dissociative Ionization of H2: A Study of Angular Distributions and Energy Distributions of Resultant Fast Protons , 1963 .

[19]  E. Gerjuoy,et al.  Charge Transfer in Molecular Hydrogen , 1960 .

[20]  E. H. Kerner The Dissociation of H 2 + by Electron Impact , 1953 .

[21]  Nobuji Sasaki,et al.  19. Molekulare Orientierung und die Dissoziations-wahrscheinlichkeit des Wasserstoffmoleküls durch Elektronenstoss. (III) , 1941 .

[22]  Nobuji Sasaki,et al.  Über die Abhängigkeit der Ionisierungswahrschein-lichkeit, H2→H+H++e+kin. Energie, von der Molekülorientierung gegen die stossenden Elektronen , 1935 .

[23]  J. Oppenheimer On the Quantum Theory of the Capture of Electrons , 1928 .