Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts

[1]  D. Iliopoulos,et al.  Identification of Circulating MicroRNA Signatures in Crohn's Disease Using the Nanostring nCounter Technology , 2016, Inflammatory bowel diseases.

[2]  Vassilios Myrianthopoulos,et al.  Exploring and exploiting the systemic effects of deregulated replication licensing. , 2016, Seminars in cancer biology.

[3]  M. Platzer,et al.  Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq , 2016, PloS one.

[4]  Shou-Ching Tang,et al.  The insights of Let‐7 miRNAs in oncogenesis and stem cell potency , 2016, Journal of cellular and molecular medicine.

[5]  Kai Stühler,et al.  MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4 , 2016, Aging.

[6]  Yuanyang Zhang,et al.  Progress on the relationship between miR-125 family and tumorigenesis. , 2015, Experimental cell research.

[7]  D. Iliopoulos,et al.  Assessment of Circulating MicroRNAs for the Diagnosis and Disease Activity Evaluation in Patients with Ulcerative Colitis by Using the Nanostring Technology , 2015, Inflammatory bowel diseases.

[8]  R. Guthke,et al.  Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts , 2015, BioMed research international.

[9]  R. Gregory,et al.  MicroRNA biogenesis pathways in cancer , 2015, Nature Reviews Cancer.

[10]  Artemis G. Hatzigeorgiou,et al.  DIANA-miRPath v3.0: deciphering microRNA function with experimental support , 2015, Nucleic Acids Res..

[11]  O. Bischof,et al.  MicroRNAs and lncRNAs in senescence: A re‐view , 2015, IUBMB life.

[12]  D. Melzer,et al.  Comparison of senescence-associated miRNAs in primary skin and lung fibroblasts , 2015, Biogerontology.

[13]  Gwang Su Kim,et al.  Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner. , 2015, Biochemical and biophysical research communications.

[14]  Athanasios Fevgas,et al.  DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions , 2014, Nucleic Acids Res..

[15]  L. Harries MicroRNAs as Mediators of the Ageing Process , 2014, Genes.

[16]  G. Alexiou,et al.  Intraoperative cell-cycle analysis to guide brain tumor removal , 2014, Proceedings of the National Academy of Sciences.

[17]  F. Cimino,et al.  Comparative Analysis of Gene Expression Data Reveals Novel Targets of Senescence-Associated microRNAs , 2014, PloS one.

[18]  H. Hermeking,et al.  The p53/miR-34 axis in development and disease. , 2014, Journal of molecular cell biology.

[19]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[20]  K. Helin,et al.  A Screen Identifies the Oncogenic Micro-RNA miR-378a-5p as a Negative Regulator of Oncogene-Induced Senescence , 2014, PloS one.

[21]  F. D. D. Fagagna A direct role for small non-coding RNAs in DNA damage response. , 2014 .

[22]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[23]  Qingbo Xu,et al.  Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways , 2014 .

[24]  P. Sharp,et al.  The role of miRNAs in regulating gene expression networks. , 2013, Journal of molecular biology.

[25]  C. Franceschi,et al.  MicroRNAs linking inflamm-aging, cellular senescence and cancer , 2013, Ageing Research Reviews.

[26]  H. Toledano,et al.  The role of the heterochronic microRNA let-7 in the progression of aging , 2013, Experimental Gerontology.

[27]  Stefan L Ameres,et al.  Diversifying microRNA sequence and function , 2013, Nature Reviews Molecular Cell Biology.

[28]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[29]  F. Gruber,et al.  High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan , 2013, Aging cell.

[30]  Eleazar Eskin,et al.  Genome reassembly with high-throughput sequencing data , 2013, BMC Genomics.

[31]  Yumeng Sun,et al.  Diverse functions of miR-125 family in different cell contexts , 2013, Journal of Hematology & Oncology.

[32]  D. Dykxhoorn,et al.  MicroRNA-10A* and MicroRNA-21 Modulate Endothelial Progenitor Cell Senescence Via Suppressing High-Mobility Group A2 , 2012, Circulation research.

[33]  Pornpimol Charoentong,et al.  Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts , 2013, BMC Genomics.

[34]  V. Gorgoulis,et al.  The canonical NF-κB pathway differentially protects normal and human tumor cells from ROS-induced DNA damage. , 2012, Cellular signalling.

[35]  H. Hermeking,et al.  MicroRNAs in the p53 network: micromanagement of tumour suppression , 2012, Nature Reviews Cancer.

[36]  C. Croce,et al.  microRNA involvement in human cancer. , 2012, Carcinogenesis.

[37]  A. Dejean,et al.  Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells , 2012, Nature Cell Biology.

[38]  S. Lowe,et al.  The microcosmos of cancer , 2012, Nature.

[39]  Aristides G. Eliopoulos,et al.  Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins , 2011, The Journal of cell biology.

[40]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[41]  Kwok-Kin Wong,et al.  Lysine-specific Demethylase 2B (KDM2B)-let-7-Enhancer of Zester Homolog 2 (EZH2) Pathway Regulates Cell Cycle Progression and Senescence in Primary Cells* , 2011, The Journal of Biological Chemistry.

[42]  M. Gorospe,et al.  MicroRegulators come of age in senescence. , 2011, Trends in genetics : TIG.

[43]  M. Malumbres,et al.  MicroRNAs and the cell cycle. , 2011, Biochimica et biophysica acta.

[44]  Miao Wang,et al.  Differential expression of oncogenic miRNAs in proliferating and senescent human fibroblasts , 2011, Molecular and Cellular Biochemistry.

[45]  J. Campisi,et al.  Four faces of cellular senescence , 2011, The Journal of cell biology.

[46]  A. D’Ambrogio,et al.  CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation , 2011, Nature.

[47]  F. Westermann,et al.  MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival , 2011, Cell Death and Differentiation.

[48]  P. Sharp,et al.  MicroRNA functions in stress responses. , 2010, Molecular cell.

[49]  R. Elkon,et al.  A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility , 2010, Nature Cell Biology.

[50]  M. Jarstfer,et al.  MiRNA Profile Associated with Replicative Senescence, Extended Cell Culture, and Ectopic Telomerase Expression in Human Foreskin Fibroblasts , 2010, PloS one.

[51]  H. Too,et al.  High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. , 2010, RNA.

[52]  D. Beach,et al.  Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21Waf1/Cip1 , 2010, Oncogene.

[53]  R. Grillari‐Voglauer,et al.  Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage , 2010, Experimental Gerontology.

[54]  E. Wang,et al.  MicroRNA group disorganization in aging , 2010, Experimental Gerontology.

[55]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[56]  M. Mildner,et al.  miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging , 2010, Aging cell.

[57]  H. Hermeking The miR-34 family in cancer and apoptosis , 2010, Cell Death and Differentiation.

[58]  Y. Pilpel,et al.  p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC , 2010, Cell Death and Differentiation.

[59]  P. M. Voorhoeve,et al.  MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? , 2010, Biochimica et biophysica acta.

[60]  S. Lowe,et al.  miR-221 overexpression contributes to liver tumorigenesis , 2009, Proceedings of the National Academy of Sciences.

[61]  Hansjuerg Alder,et al.  miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. , 2009, Cancer cell.

[62]  Guorong Li,et al.  Alterations in microRNA expression in stress-induced cellular senescence , 2009, Mechanisms of Ageing and Development.

[63]  O. Maes,et al.  Stepwise up‐regulation of MicroRNA expression levels from replicating to reversible and irreversible growth arrest states in WI‐38 human fibroblasts , 2009, Journal of cellular physiology.

[64]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[65]  F. D. D. Fagagna,et al.  SASPense and DDRama in cancer and ageing , 2009, Nature Cell Biology.

[66]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[67]  V. Gorgoulis,et al.  Chronic NF-κB activation delays RasV12-induced premature senescence of human fibroblasts by suppressing the DNA damage checkpoint response , 2009, Mechanisms of Ageing and Development.

[68]  S. Sherman,et al.  Germline mutation of microRNA-125a is associated with breast cancer , 2009, Journal of Medical Genetics.

[69]  N. Jamieson,et al.  Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. , 2009, Biochimica et biophysica acta.

[70]  Gordon J. Lithgow,et al.  MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8 , 2009, Aging.

[71]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[72]  Shalom Madar,et al.  p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation , 2008, Molecular systems biology.

[73]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[74]  F. D. D. Fagagna Living on a break: cellular senescence as a DNA-damage response , 2008, Nature Reviews Cancer.

[75]  A. Gartel,et al.  miRNAs: Little known mediators of oncogenesis. , 2008, Seminars in cancer biology.

[76]  S. Boronat,et al.  Linking mitosis with S-phase: Cdc6 at play , 2008, Cell cycle.

[77]  J. Méndez,et al.  CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. , 2008, Carcinogenesis.

[78]  Remco Nagel,et al.  Diverse Ways to Control p27Kip1 Function: miRNAs Come into Play , 2007, Cell cycle.

[79]  Dimitris Kletsas,et al.  Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. , 2007, Cancer research.

[80]  Naoto Tsuchiya,et al.  Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells , 2007, Proceedings of the National Academy of Sciences.

[81]  J. Campisi,et al.  Cellular senescence: when bad things happen to good cells , 2007, Nature Reviews Molecular Cell Biology.

[82]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[83]  Giovanni Vanni Frajese,et al.  miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.

[84]  Reuven Agami,et al.  Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .

[85]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[86]  R. Agami,et al.  Classifying microRNAs in cancer: the good, the bad and the ugly. , 2007, Biochimica et biophysica acta.

[87]  S. Hammond MicroRNAs as tumor suppressors , 2007, Nature Genetics.

[88]  Reuven Agami,et al.  Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. , 2007, The EMBO journal.

[89]  G. Maira,et al.  Regulation of the p 27 Kip 1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation , 2007 .

[90]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[91]  Laura Mariani,et al.  MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.

[92]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[93]  Reuven Agami,et al.  A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. , 2006, Cell.

[94]  G. Maira,et al.  Extensive modulation of a set of microRNAs in primary glioblastoma. , 2005, Biochemical and biophysical research communications.

[95]  Reuven Agami,et al.  p53-Dependent Regulation of Cdc6 Protein Stability Controls Cellular Proliferation , 2005, Molecular and Cellular Biology.

[96]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[97]  S. Jackson,et al.  Functional links between telomeres and proteins of the DNA-damage response. , 2004, Genes & development.

[98]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[99]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[100]  S. Goldstein Replicative senescence: the human fibroblast comes of age. , 1990, Science.