A comprehensive Bayesian approach for model updating and quantification of modeling errors

This paper presents a comprehensive Bayesian approach for structural model updating which accounts for errors of different kinds, including measurement noise, nonlinear distortions stemming from the linearization of the model, and modeling errors due to the limited predictability of the latter. In particular, this allows the computation of any type of statistics on the updated parameters, such as joint or marginal probability density functions, or confidence intervals. The present work includes four main contributions that make the Bayesian updating approach feasible with general numerical models: (1) the proposal of a specific experimental protocol based on multisine excitations to accurately assess measurement errors in the frequency domain; (2) two possible strategies to represent the modeling error as additional random variables to be inferred jointly with the model parameters; (3) the introduction of a polynomial chaos expansion that provides a surrogate mapping between the probability spaces of the prior random variables and the model modal parameters; (4) the use of an evolutionary Monte Carlo Markov Chain which, in conjunction with the polynomial chaos expansion, can sample the posterior probability density function of the updated parameters at a very reasonable cost. The proposed approach is validated by numerical and experimental examples.

[1]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[2]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[3]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[4]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[5]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[6]  J. Mottershead,et al.  Interval model updating with irreducible uncertainty using the Kriging predictor , 2011 .

[7]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[8]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[9]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[12]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[13]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[14]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[15]  H. G. Natke,et al.  Model-Aided Diagnosis of Mechanical Systems: Fundamentals, Detection, Localization, Assessment , 2011 .

[16]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[17]  N. Wiener The Homogeneous Chaos , 1938 .

[18]  K. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .

[19]  Byoung-Tak Zhang,et al.  System identification using evolutionary Markov chain Monte Carlo , 2001, J. Syst. Archit..

[20]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[21]  Geert Degrande,et al.  A non-parametric probabilistic model for ground-borne vibrations in buildings , 2006 .

[22]  H. G. Natke Updating computational models in the frequency domain based on measured data: a survey , 1988 .

[23]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[24]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[25]  Jérôme Antoni,et al.  Fast detection of system nonlinearity using nonstationary signals , 2010 .

[26]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[27]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[28]  Bo Hu,et al.  Distributed evolutionary Monte Carlo for Bayesian computing , 2010, Comput. Stat. Data Anal..

[29]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[30]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[31]  M. Friswell,et al.  MODEL UPDATING USING ROBUST ESTIMATION , 2002 .

[32]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[33]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[34]  S. W. Doebling,et al.  A Validation of Bayesian Finite Element Model Updating for Linear Dynamics , 1999 .

[35]  Kye-Si Kwon,et al.  Robust finite element model updating using Taguchi method , 2005 .

[36]  Fabrice Gamboa,et al.  BAYESIAN METHODS AND MAXIMUM ENTROPY FOR ILL-POSED INVERSE PROBLEMS , 1997 .

[37]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[38]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[39]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[40]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .