On the interface identification of free boundary problem by method of fundamental solution

[1]  J. R. Cannon,et al.  A two phase stefan problem: regularity of the free boundary , 1971 .

[2]  K. Kunisch,et al.  Iterative choices of regularization parameters in linear inverse problems , 1998 .

[3]  Daniel Lesnic,et al.  The method of fundamental solutions for free surface Stefan problems. , 2009 .

[4]  Joseph I. Goldstein,et al.  The growth of the Widmanstätten pattern in metallic meteorites , 1965 .

[5]  T. Wei,et al.  Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation , 2009 .

[6]  J. R. Cannon,et al.  A two phase Stefan problem with flux boundary conditions , 1971 .

[7]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[8]  Zhilin Li,et al.  Immersed interface methods for moving interface problems , 1997, Numerical Algorithms.

[9]  Jijun Liu,et al.  A model function method for determining the regularizing parameter in potential approach for the recovery of scattered wave , 2008 .

[10]  Fred Landis,et al.  Numerical and Machine Solutions of Transient Heat-Conduction Problems Involving Melting or Freezing: Part I—Method of Analysis and Sample Solutions , 1959 .

[11]  Zewen Wang,et al.  New model function methods for determining regularization parameters in linear inverse problems , 2009 .

[12]  N. S. Mera The method of fundamental solutions for the backward heat conduction problem , 2005 .

[13]  Nikolaos A. Malamataris,et al.  Finite element analysis of ferrite–austenite diffusion controlled phase transformation , 2002 .

[14]  Y. C. Hon,et al.  A computational method for inverse free boundary determination problem , 2008 .

[15]  Y. Hon,et al.  A fundamental solution method for inverse heat conduction problem , 2004 .

[16]  Joseph I. Goldstein,et al.  Non-isothermal finite diffusion-controlled growth in ternary systems , 1975 .

[17]  J. R. Cannon,et al.  A two phase Stefan problem with temperature boundary conditions , 1971 .

[18]  Maciej Pietrzyk,et al.  Numerical solution of the diffusion equation with moving boundary applied to modelling of the austenite–ferrite phase transformation , 2008 .