Descent sets on 321-avoiding involutions and hook decompositions of partitions

We show that the distribution of the major index over the set of involutions in S n that avoid the pattern 321 is given by the q-analogue of the n-th central binomial coefficient. The proof consists of a composition of three non-trivial bijections, one being the Robinson-Schensted correspondence, ultimately mapping those involutions with major index m into partitions of m whose Young diagram fits inside a ? n 2 ? × ? n 2 ? box. We also obtain a refinement that keeps track of the descent set, and we deduce an analogous result for the comajor index of 123-avoiding involutions.

[1]  Sergi Elizalde,et al.  A Simple and Unusual Bijection for Dyck Paths and its Consequences , 2003 .

[2]  Dan Saracino,et al.  Another look at bijections for pattern-avoiding permutations , 2010, Adv. Appl. Math..

[3]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[4]  Chak-On Chow On the Eulerian Enumeration of Involutions , 2008, Electron. J. Comb..

[5]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[6]  Marilena Barnabei,et al.  THE DESCENT STATISTIC ON 123-AVOIDING PERMUTATIONS , 2010 .

[7]  Marilena Barnabei,et al.  The joint distribution of consecutive patterns and descents in permutations avoiding 3-1-2 , 2010, Eur. J. Comb..

[8]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[9]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[10]  Sergi Elizalde,et al.  Symmetries of statistics on lattice paths between two boundaries , 2013, 1305.2206.

[11]  Sergi Elizalde,et al.  Fixed Points and Excedances in Restricted Permutations , 2002, Electron. J. Comb..

[12]  Bruce E. Sagan,et al.  Permutation patterns and statistics , 2011, Discret. Math..

[13]  Aaron Robertson,et al.  Refined restricted involutions , 2007, Eur. J. Comb..

[14]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[15]  Sergi Elizalde Multiple Pattern Avoidance with respect to Fixed Points and Excedances , 2004, Electron. J. Comb..

[16]  Edward A. Bender,et al.  Enumeration of Plane Partitions , 1972, J. Comb. Theory A.

[17]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[18]  Igor Pak,et al.  Bijections for refined restricted permutations , 2004, J. Comb. Theory, Ser. A.

[19]  Doron Zeilberger,et al.  Refined Restricted Permutations , 2002, math/0203033.

[20]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[21]  Bruce E. Sagan,et al.  Mahonian pairs , 2011, J. Comb. Theory, Ser. A.

[22]  Marilena Barnabei,et al.  The descent statistic on involutions is not log-concave , 2007, Eur. J. Comb..

[23]  Yuval Roichman,et al.  Equidistribution and sign-balance on 321-avoiding permutations. , 2003 .

[24]  Bruce E. Sagan,et al.  Inversion polynomials for 321-avoiding permutations , 2011, Discret. Math..

[25]  Marilena Barnabei,et al.  The Eulerian distribution on centrosymmetric involutions , 2009, Discret. Math. Theor. Comput. Sci..

[26]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[27]  Jiang Zeng,et al.  The Eulerian distribution on involutions is indeed unimodal , 2006, J. Comb. Theory, Ser. A.

[28]  Richard P. Stanley,et al.  Algebraic Combinatorics: Walks, Trees, Tableaux, and More , 2013 .

[29]  J. Wrench Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .

[30]  Mireille Bousquet-Mélou,et al.  Decreasing Subsequences in Permutations and Wilf Equivalence for Involutions , 2004, math/0405334.

[31]  Vít Jelínek,et al.  Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns , 2011, J. Comb. Theory A.

[32]  Dan Saracino,et al.  On bijections for pattern-avoiding permutations , 2009, J. Comb. Theory, Ser. A.