Estimation for Nonlinear Dynamical Systems over Packet-Dropping Networks

Two approaches, extended Kalman filter (EKF) and moving horizon estimation (MHE), are discussed for state estimation for nonlinear dynamical systems over packet-dropping networks. For EKF, we provide sufficient conditions that guarantee a bounded EKF error covariance. For MHE, a natural scheme on organizing the finite horizon window is proposed to handle intermittent observations. A nonlinear programming software package, SNOPT, is employed in MHE and the formulation for constraints is discussed in detail. Examples and simulation results are presented.

[1]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[2]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Konrad Reif,et al.  Stochastic stability of the discrete-time extended Kalman filter , 1999, IEEE Trans. Autom. Control..

[4]  E. Yaz,et al.  Performance evaluation of extended Kalman filter based state estimation for first order nonlinear dynamic systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[5]  Panos J. Antsaklis,et al.  Guest Editorial Special Issue on Networked Control Systems , 2004, IEEE Trans. Autom. Control..

[6]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systemsy , 1995 .

[7]  Richard M. Murray,et al.  State estimation over packet dropping networks using multiple description coding , 2006, Autom..

[8]  Mohamed T. Hadidi,et al.  Linear recursive state estimators under uncertain observations , 1978 .

[9]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1996, IEEE Trans. Signal Process..

[10]  Johan Nilsson,et al.  Stochastic Analysis and Control of Real-Time Systems with Random Time Delays , 1996 .

[11]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[12]  Decision Systems.,et al.  Guaranteed properties of the extended Kalman filter , 1987 .

[13]  Nasser E. Nahi,et al.  Optimal recursive estimation with uncertain observation , 1969, IEEE Trans. Inf. Theory.

[14]  Oswaldo Luiz V. Costa,et al.  Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems , 2002, IEEE Trans. Autom. Control..

[15]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .