The volume of pseudoeffective line bundles and partial equilibrium

Let (L, he−u) be a pseudoeffective line bundle on an n-dimensional compact Kähler manifold X. Let h0(X,Lk ⊗ I(ku)) be the dimension of the space of sections s of Lk such that hk(s, s)e−ku is integrable. We show that the limit of k−nh0(X,Lk ⊗ I(ku)) exists, and equals the non-pluripolar volume of P [u]I , the I-model potential associated to u. We give applications of this result to Kähler quantization: fixing a Bernstein– Markov measure ν, we show that the partial Bergman measures of u converge weakly to the non-pluripolar Monge–Ampère measure of P [u]I , the partial equilibrium.

[1]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[2]  Szego kernels and a theorem of Tian , 2000, math-ph/0002009.

[3]  L. Lempert,et al.  Geodesics in the space of Kähler metrics , 2011, 1105.2188.

[4]  ian,et al.  BERGMAN METRICS AND GEODESICS IN THE SPACE OF KÄHLER METRICS ON TORIC VARIETIES , 2010 .

[5]  Song Sun,et al.  Space of Kähler Metrics (V) – Kähler Quantization , 2012 .

[6]  Robert Berman,et al.  Growth of balls of holomorphic sections and energy at equilibrium , 2008, 0803.1950.

[7]  J. Ross,et al.  Analytic test configurations and geodesic rays , 2011, 1101.1612.

[8]  G. Tian Kähler metrics on algebraic manifolds , 1988 .

[9]  S. Boucksom Cônes positifs des variétés complexes compactes , 2002 .

[10]  Robert Berman,et al.  Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.

[11]  S. Boucksom ON THE VOLUME OF A LINE BUNDLE , 2002, math/0201031.

[12]  R. Berman Bergman kernels and equilibrium measures for ample line bundles , 2007, 0704.1640.

[13]  C. H. Lu,et al.  Degenerate complex Hessian equations on compact K\"ahler manifolds , 2014, 1402.5147.

[14]  Michael Schneider,et al.  PSEUDO-EFFECTIVE LINE BUNDLES ON COMPACT KÄHLER MANIFOLDS , 2000, math/0006205.

[15]  G. Marinescu,et al.  On the first order asymptotics of partial Bergman kernels , 2016, 1601.00241.

[16]  J. Ross,et al.  Envelopes of positive metrics with prescribed singularities , 2012, 1210.2220.

[17]  P. Eyssidieux,et al.  Monge–Ampère equations in big cohomology classes , 2008 .

[18]  The weighted Monge–Ampère energy of quasiplurisubharmonic functions , 2006, math/0612630.

[19]  Junyan Cao Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds , 2012, Compositio Mathematica.

[20]  Thierry Bouche Convergence de la métrique de Fubini-Study d'un fibré linéaire positif , 1990 .

[21]  E. Nezza,et al.  Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity , 2017, Analysis & PDE.

[22]  Jacob Sturm,et al.  The Monge-Ampère operator and geodesics in the space of Kähler potentials , 2005, math/0504157.

[23]  B. A. Taylor,et al.  A new capacity for plurisubharmonic functions , 1982 .

[24]  Dano Kim Equivalence of plurisubharmonic singularities and Siu-type metrics , 2014, 1407.6474.

[25]  T. Darvas,et al.  Geometric pluripotential theory on Kähler manifolds , 2019, Advances in Complex Geometry.

[26]  S. Zelditch,et al.  Central limit theorem for spectral partial Bergman kernels , 2017, Geometry & Topology.

[27]  Y. Rubinstein,et al.  Quantization in Geometric Pluripotential Theory , 2018, Communications on Pure and Applied Mathematics.

[28]  Intrinsic capacities on compact Kähler manifolds , 2004, math/0401302.

[29]  Zhiqin Lu On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch , 2000 .

[30]  G. Marinescu,et al.  Holomorphic sections of line bundles vanishing along subvarieties , 2019, 1909.00328.

[31]  C. H. Lu Comparison of Monge–Ampère capacities , 2020 .

[32]  S. Boucksom SINGULARITIES OF PLURISUBHARMONIC FUNCTIONS AND MULTIPLIER IDEALS , 2020 .

[33]  J. Ross,et al.  Asymptotics of Partial Density Functions for Divisors , 2013, Journal of geometric analysis.

[34]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[35]  R. Berman Bergman kernels and equilibrium measures for line bundles over projective manifolds , 2007, 0710.4375.

[36]  Mingchen Xia,et al.  The closures of test configurations and algebraic singularity types , 2020, 2003.04818.

[37]  Steve Zelditch,et al.  EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .

[38]  Jingzhou Sun Asymptotics of partial density function vanishing along smooth subvariety , 2020, 2010.04951.

[39]  X. Ma,et al.  Holomorphic Morse Inequalities and Bergman Kernels , 2007 .

[40]  S. Boucksom,et al.  Valuations and plurisubharmonic singularities , 2007 .

[41]  D. Catlin The Bergman Kernel and a Theorem of Tian , 1999 .

[42]  J. Demailly On the Cohomology of Pseudoeffective Line Bundles , 2014, 1401.5432.

[43]  J. Demailly Analytic Methods in Algebraic Geometry , 2007 .

[44]  S. Zelditch,et al.  Interface asymptotics of partial Bergman kernels on $S^1$-symmetric Kaehler manifolds , 2016, 1604.06655.

[45]  E. Nezza,et al.  Monge–Ampère measures on contact sets , 2019, Mathematical Research Letters.

[46]  Kewei Zhang A quantization proof of the uniform Yau-Tian-Donaldson conjecture , 2021 .

[47]  Mingchen Xia Integration by parts formula for non-pluripolar product , 2019, 1907.06359.

[48]  L. Bonavero Inégalités de Morse Holomorphes Singulières , 1998 .

[49]  B. A. Taylor,et al.  The dirichlet problem for a complex Monge-Ampère equation , 1976 .

[50]  H. Tsuji Extension of log pluricanonical forms from subvarieties , 2007, 0709.2710.

[51]  Dano Kim,et al.  Jumping numbers of analytic multiplier ideals (with an appendix by S , 2019, Annales Polonici Mathematici.

[52]  Xiangyu Zhou,et al.  A proof of Demailly's strong openness conjecture , 2015 .

[53]  D. Nystrom Monotonicity of non-pluripolar Monge-Ampere masses , 2017, Indiana University Mathematics Journal.

[54]  E. Nezza,et al.  The metric geometry of singularity types , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).