The volume of pseudoeffective line bundles and partial equilibrium
暂无分享,去创建一个
[1] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds , 1990 .
[2] Szego kernels and a theorem of Tian , 2000, math-ph/0002009.
[3] L. Lempert,et al. Geodesics in the space of Kähler metrics , 2011, 1105.2188.
[4] ian,et al. BERGMAN METRICS AND GEODESICS IN THE SPACE OF KÄHLER METRICS ON TORIC VARIETIES , 2010 .
[5] Song Sun,et al. Space of Kähler Metrics (V) – Kähler Quantization , 2012 .
[6] Robert Berman,et al. Growth of balls of holomorphic sections and energy at equilibrium , 2008, 0803.1950.
[7] J. Ross,et al. Analytic test configurations and geodesic rays , 2011, 1101.1612.
[8] G. Tian. Kähler metrics on algebraic manifolds , 1988 .
[9] S. Boucksom. Cônes positifs des variétés complexes compactes , 2002 .
[10] Robert Berman,et al. Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.
[11] S. Boucksom. ON THE VOLUME OF A LINE BUNDLE , 2002, math/0201031.
[12] R. Berman. Bergman kernels and equilibrium measures for ample line bundles , 2007, 0704.1640.
[13] C. H. Lu,et al. Degenerate complex Hessian equations on compact K\"ahler manifolds , 2014, 1402.5147.
[14] Michael Schneider,et al. PSEUDO-EFFECTIVE LINE BUNDLES ON COMPACT KÄHLER MANIFOLDS , 2000, math/0006205.
[15] G. Marinescu,et al. On the first order asymptotics of partial Bergman kernels , 2016, 1601.00241.
[16] J. Ross,et al. Envelopes of positive metrics with prescribed singularities , 2012, 1210.2220.
[17] P. Eyssidieux,et al. Monge–Ampère equations in big cohomology classes , 2008 .
[18] The weighted Monge–Ampère energy of quasiplurisubharmonic functions , 2006, math/0612630.
[19] Junyan Cao. Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds , 2012, Compositio Mathematica.
[20] Thierry Bouche. Convergence de la métrique de Fubini-Study d'un fibré linéaire positif , 1990 .
[21] E. Nezza,et al. Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity , 2017, Analysis & PDE.
[22] Jacob Sturm,et al. The Monge-Ampère operator and geodesics in the space of Kähler potentials , 2005, math/0504157.
[23] B. A. Taylor,et al. A new capacity for plurisubharmonic functions , 1982 .
[24] Dano Kim. Equivalence of plurisubharmonic singularities and Siu-type metrics , 2014, 1407.6474.
[25] T. Darvas,et al. Geometric pluripotential theory on Kähler manifolds , 2019, Advances in Complex Geometry.
[26] S. Zelditch,et al. Central limit theorem for spectral partial Bergman kernels , 2017, Geometry & Topology.
[27] Y. Rubinstein,et al. Quantization in Geometric Pluripotential Theory , 2018, Communications on Pure and Applied Mathematics.
[28] Intrinsic capacities on compact Kähler manifolds , 2004, math/0401302.
[29] Zhiqin Lu. On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch , 2000 .
[30] G. Marinescu,et al. Holomorphic sections of line bundles vanishing along subvarieties , 2019, 1909.00328.
[31] C. H. Lu. Comparison of Monge–Ampère capacities , 2020 .
[32] S. Boucksom. SINGULARITIES OF PLURISUBHARMONIC FUNCTIONS AND MULTIPLIER IDEALS , 2020 .
[33] J. Ross,et al. Asymptotics of Partial Density Functions for Divisors , 2013, Journal of geometric analysis.
[34] S. Donaldson. Scalar Curvature and Projective Embeddings, I , 2001 .
[35] R. Berman. Bergman kernels and equilibrium measures for line bundles over projective manifolds , 2007, 0710.4375.
[36] Mingchen Xia,et al. The closures of test configurations and algebraic singularity types , 2020, 2003.04818.
[37] Steve Zelditch,et al. EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .
[38] Jingzhou Sun. Asymptotics of partial density function vanishing along smooth subvariety , 2020, 2010.04951.
[39] X. Ma,et al. Holomorphic Morse Inequalities and Bergman Kernels , 2007 .
[40] S. Boucksom,et al. Valuations and plurisubharmonic singularities , 2007 .
[41] D. Catlin. The Bergman Kernel and a Theorem of Tian , 1999 .
[42] J. Demailly. On the Cohomology of Pseudoeffective Line Bundles , 2014, 1401.5432.
[43] J. Demailly. Analytic Methods in Algebraic Geometry , 2007 .
[44] S. Zelditch,et al. Interface asymptotics of partial Bergman kernels on $S^1$-symmetric Kaehler manifolds , 2016, 1604.06655.
[45] E. Nezza,et al. Monge–Ampère measures on contact sets , 2019, Mathematical Research Letters.
[46] Kewei Zhang. A quantization proof of the uniform Yau-Tian-Donaldson conjecture , 2021 .
[47] Mingchen Xia. Integration by parts formula for non-pluripolar product , 2019, 1907.06359.
[48] L. Bonavero. Inégalités de Morse Holomorphes Singulières , 1998 .
[49] B. A. Taylor,et al. The dirichlet problem for a complex Monge-Ampère equation , 1976 .
[50] H. Tsuji. Extension of log pluricanonical forms from subvarieties , 2007, 0709.2710.
[51] Dano Kim,et al. Jumping numbers of analytic multiplier ideals (with an appendix by S , 2019, Annales Polonici Mathematici.
[52] Xiangyu Zhou,et al. A proof of Demailly's strong openness conjecture , 2015 .
[53] D. Nystrom. Monotonicity of non-pluripolar Monge-Ampere masses , 2017, Indiana University Mathematics Journal.
[54] E. Nezza,et al. The metric geometry of singularity types , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).