Magic state distillation at intermediate size
暂无分享,去创建一个
David Poulin | Jeongwan Haah | Matthew B. Hastings | Dave Wecker | M. Hastings | D. Poulin | Jeongwan Haah | D. Wecker
[1] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[2] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[3] E. Knill. Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .
[4] T. Beth,et al. Quantum BCH Codes , 1999, quant-ph/9910060.
[5] Leif K. Jørgensen. Girth 5 graphs from relative difference sets , 2005, Discret. Math..
[6] Emanuel Knill,et al. Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..
[7] Cody Jones,et al. Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.
[8] E. Knill. Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.
[9] Alan J. Hoffman,et al. On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..
[10] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[11] Jeongwan Haah,et al. Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.
[12] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[13] M. Freedman,et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.