Design and test of IPMC artificial muscle microgripper

The goal of this work is to develop a microgripper using electroactive ionic polymer metal composite (IPMC) as an actuator to grasp and manipulate micro-sized flexible and rigid objects. We derive a theoretical force model for the microgripper that estimates that an IPMC finger exerts a force of 85 μN when grasping a solder ball of 15 mg, and experimentally verify the result. We also show empirically that the relationship between load carrying capability and the length of microgripper fingers is linear. Finally, we show how flexible objects (hydrogels in this case) are grasped with this IPMC microgripper.

[1]  Fumihito Arai,et al.  Synchronized laser micromanipulation of microtools for assembly of microbeads and indirect manipulation of microbe , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Rajesh Rajamani,et al.  A novel dual-axis electrostatic microactuation system for micromanipulation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Mohsen Shahinpoor,et al.  Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles , 2004 .

[4]  Yantao Shen,et al.  Force-guided assembly of micro mirrors , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Blake Hannaford,et al.  4-axis electromagnetic microgripper , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Russell H. Taylor,et al.  Preliminary experiments in robot/human cooperative microinjection , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[7]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[8]  Michael Goldfarb,et al.  A flexure-based gripper for small-scale manipulation , 1999, Robotica.

[9]  M. Shahinpoor,et al.  Grasping flexible objects using artificial muscle microgrippers , 2004, Proceedings World Automation Congress, 2004..

[10]  Stéphane Régnier,et al.  Manipulation of Micro-objects Using Adhesion Forces and Dynamical Effects , 2002, ISER.

[11]  Paolo Dario,et al.  Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Etienne Burdet,et al.  Monolithic shape memory alloy microgripper for 3D assembly of tissue engineering scaffolds , 2001, Optics East.

[13]  Wen J. Li,et al.  A thermally actuated polymer micro robotic gripper for manipulation of biological cells , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Fumihito Arai,et al.  Adhesion-type micro end effector for micromanipulation , 1997, Proceedings of International Conference on Robotics and Automation.

[15]  Markus Brunner,et al.  Vacuum tool for handling microobjects with a NanoRobot , 1997, Proceedings of International Conference on Robotics and Automation.

[16]  S G Shirley,et al.  Dielectrophoretic manipulation of suspended submicron particles , 2000, Electrophoresis.

[17]  Chung Choo Chung,et al.  Position and Force Control of a Sensorized Microgripper , 2002 .

[18]  M. Washizu,et al.  Movement of Blood Cells in Liquid by Non-Uniform Travelling Field , 1986, 1986 Annual Meeting Industry Applications Society.