A Reduced Basis Technique for Long-Time Unsteady Turbulent Flows

We present a reduced basis technique for long-time integration of parametrized incompressible turbulent flows. The new contributions are threefold. First, we propose a constrained Galerkin formulation that corrects the standard Galerkin statement by incorporating prior information about the long-time attractor. For explicit and semi-implicit time discretizations, our statement reads as a constrained quadratic programming problem where the objective function is the Euclidean norm of the error in the reduced Galerkin (algebraic) formulation, while the constraints correspond to bounds for the maximum and minimum value of the coefficients of the $N$-term expansion. Second, we propose an \emph{a posteriori} error indicator, which corresponds to the dual norm of the residual associated with the time-averaged momentum equation. We demonstrate that the error indicator is highly-correlated with the error in mean flow prediction, and can be efficiently computed through an offline/online strategy. Third, we propose a Greedy algorithm for the construction of an approximation space/procedure valid over a range of parameters; the Greedy is informed by the \emph{a posteriori} error indicator developed in this paper. We illustrate our approach and we demonstrate its effectiveness by studying the dependence of a two-dimensional turbulent lid-driven cavity flow on the Reynolds number.

[1]  Habib N. Najm,et al.  Bayesian estimation of Karhunen-Loève expansions; A random subspace approach , 2016, J. Comput. Phys..

[2]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[3]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[4]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[5]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[8]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[9]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[10]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[11]  Nadine Aubry,et al.  Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions , 1992 .

[12]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[13]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .

[14]  M. Bergmann Optimisation aérodynamique par réduction de modèle POD et contrôle optimal : application au sillage laminaire d'un cylindre circulaire , 2004 .

[15]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[16]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[17]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[18]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[19]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[20]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[21]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[22]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[23]  D. Rovas,et al.  A blackbox reduced-basis output bound method for noncoercive linear problems , 2002 .

[24]  Alessandro Alla,et al.  Nonlinear Model Order Reduction via Dynamic Mode Decomposition , 2016, SIAM J. Sci. Comput..

[25]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[26]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[27]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[28]  A. Debussche,et al.  IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .

[29]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[30]  Gianluigi Rozza,et al.  Advances in Reduced order modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method , 2017 .

[31]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[32]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[33]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[34]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[35]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[36]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems , 2007 .

[37]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[38]  B. Bouriquet,et al.  Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics , 2016, 1611.02219.

[39]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[40]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[41]  Bernard Haasdonk,et al.  Convergence Rates of the POD–Greedy Method , 2013 .

[42]  Matthew F. Barone,et al.  Stable Galerkin reduced order models for linearized compressible flow , 2009, J. Comput. Phys..

[43]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[44]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[45]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[46]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[47]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[48]  Traian Iliescu,et al.  SUPG reduced order models for convection-dominated convection–diffusion–reaction equations , 2014 .

[49]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[50]  Edmond Chow,et al.  A cross-validatory method for dependent data , 1994 .

[51]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[52]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[53]  Lars Davidson,et al.  Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition , 1998 .

[54]  Y. Maday,et al.  A Two-grid Finite-element/reduced Basis Scheme for the Approximation of the Solution of Parameter Dependent P.d.e , 2009 .

[55]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[56]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[57]  Gianluigi Rozza,et al.  Reduced-order semi-implicit schemes for fluid-structure interaction problems , 2017, 1711.10829.

[58]  Alfio Quarteroni,et al.  An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems , 2016 .

[59]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for fluid flows: Burgers equation , 2013, 1308.3276.

[60]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[61]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[62]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[63]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[64]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[65]  A. Quarteroni,et al.  Reduced Basis Techniques For Nonlinear Conservation Laws , 2015 .

[66]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[67]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[68]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[69]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[70]  Jeffrey S. Racine,et al.  Consistent cross-validatory model-selection for dependent data: hv-block cross-validation , 2000 .

[71]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[72]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[73]  Steven A. Orszag,et al.  Order and disorder in two- and three-dimensional Bénard convection , 1984, Journal of Fluid Mechanics.

[74]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[75]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[76]  Eusebio Valero,et al.  Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..

[77]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[78]  Christian Himpe,et al.  Hierarchical Approximate Proper Orthogonal Decomposition , 2016, SIAM J. Sci. Comput..

[79]  Maciej Balajewicz,et al.  A New Approach to Model Order Reduction of the Navier-Stokes Equations , 2012 .

[80]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[81]  Erwan Liberge,et al.  A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations , 2015, Commun. Nonlinear Sci. Numer. Simul..