S-Shaped ${I}$ – ${V}$ Characteristics of Organic Solar Cells: Solving Mazhari’s Lumped-Parameter Equivalent Circuit Model

We explain how to obtain closed-form analytic solutions from the set of equations that describe the three-diode lumped-parameter equivalent circuit model proposed by Mazhari <xref ref-type="bibr" rid="ref1">[1]</xref> to portray the undesirable S-shape often observed in <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics of illuminated organic solar cells (OSCs), and occasionally seen in other types of solar cells. This allows quick extraction of the model’s parameter values by directly fitting the resulting closed-form solution to the cell’s measured <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> data. Such mathematical simplification of the extraction procedure facilitates individually studying the effect of each parameter on the illuminated OSC <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics, and thus on its power generation capacity. We illustrate application of the direct extraction procedure to measured <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics of an experimental OSC, which exhibits the illumination intensity-dependent S-shapes. The usefulness of the analytic solution to assess the effect of the model parameters is further corroborated by graphically illustrating the progression of a series of hypothetical synthetic <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> characteristics generated by this analytic solution using gradually changing the parameter values. Analysis of the results, in this case, indicates that activation of the diode that represents recombination is the key factor responsible for the emergence of the illuminated <inline-formula> <tex-math notation="LaTeX">${I}$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">${V}$ </tex-math></inline-formula> curve’s S-shape.

[1]  K. Leo,et al.  Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells , 2011 .

[2]  Jean Decobert,et al.  Manufacturing and Characterization of III-V on Silicon Multijunction Solar Cells , 2016 .

[3]  S. Marder,et al.  Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes , 2008 .

[4]  D. Rauh,et al.  S-shaped current-voltage characteristics of organic solar devices , 2010, 1005.5669.

[5]  B. Mazhari,et al.  An improved solar cell circuit model for organic solar cells , 2006 .

[6]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[7]  J. Kong,et al.  Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. , 2015, Nano letters.

[8]  Antonino Laudani,et al.  An in-depth analysis of the modelling of organic solar cells using multiple-diode circuits , 2016 .

[9]  Karl Leo,et al.  Influence of Hole‐Transport Layers and Donor Materials on Open‐Circuit Voltage and Shape of I–V Curves of Organic Solar Cells , 2011 .

[10]  J. Nelson,et al.  On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells , 2013 .

[11]  B. Arredondo,et al.  Exact analytical solution of a two diode circuit model for organic solar cells showing S-shape using Lambert W-functions , 2012 .

[12]  Hongzheng Chen,et al.  Assessing the origin of the S-shaped I-V curve in organic solar cells: An improved equivalent circuit model , 2014 .

[13]  Olle Inganäs,et al.  Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current–voltage characteristics , 2013 .

[14]  H. Egelhaaf,et al.  Understanding S-Shaped Current-Voltage Characteristics in Organic Solar Cells Containing a TiOx Inter layer with Impedance Spectroscopy and Equivalent Circuit Analysis , 2012 .

[15]  Yang Yang,et al.  Dipole induced anomalous S-shape I-V curves in polymer solar cells , 2009 .

[16]  M. Burgelman,et al.  Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. , 1997 .

[17]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[18]  Andrew J. Medford,et al.  The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics , 2010 .

[19]  K. S. Narayan,et al.  Correlating reduced fill factor in polymer solar cells to contact effects , 2008 .

[20]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[21]  J. Sites,et al.  Effect of back-contact barrier on thin-film CdTe solar cells , 2006 .

[22]  A. Ortiz-Conde,et al.  Lumped Parameter Modeling of Organic Solar Cells’ S-Shaped I–V Characteristics , 2013, IEEE Journal of Photovoltaics.

[23]  F. Nüesch,et al.  Origin of the Kink in Current-Density Versus Voltage Curves and Efficiency Enhancement of Polymer-C $_{\bf 60}$ Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[25]  Kristian O. Sylvester-Hvid,et al.  Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy , 2007 .

[26]  Jean-Pierre Charles,et al.  An equivalent circuit approach to organic solar cell modelling , 2008, Microelectron. J..

[27]  Jizheng Wang,et al.  Fill factor in organic solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[28]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.