Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals

[1]  Rakesh Agrawal,et al.  9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .

[2]  D. Abou‐Ras,et al.  Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .

[3]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[4]  Mark S. Lundstrom,et al.  Analysis of temperature-dependent current-voltage characteristics for CIGSSe and CZTSSe thin film solar cells from nanocrystal inks , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[5]  Kaushik Roy Choudhury,et al.  High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. , 2012, Journal of the American Chemical Society.

[6]  Y. Lai,et al.  Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method , 2012 .

[7]  T. Raadik,et al.  Photoluminescence and Raman study of Cu2ZnSn(SexS1 − x)4 monograins for photovoltaic applications , 2011 .

[8]  A. D. Cunha,et al.  Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .

[9]  T. Eisenbarth,et al.  Route Toward High-Efficiency Single-Phase Cu$_{\bf 2}$ ZnSn(S,Se)$_{\bf 4}$ Thin-Film Solar Cells: Model Experiments and Literature Review , 2011, IEEE Journal of Photovoltaics.

[10]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[11]  J. Álvarez-García,et al.  Raman Spectroscopy on Thin Films for Solar Cells , 2011 .

[12]  A. Pérez‐Rodríguez,et al.  Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films , 2011 .

[13]  Kunihiko Tanaka,et al.  Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency , 2011 .

[14]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.

[15]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[16]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[17]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[18]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[19]  H. Hillhouse,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[20]  I. Bineva,et al.  Raman Scattering from ZnSe Nanolayers , 2009 .

[21]  H. Hillhouse,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[22]  A. Garg Concentration dependent vibrational mode behaviour in the mixed crystal system SnSxSe2-x , 1991 .

[23]  D. G. Semak,et al.  Raman Scattering in Amorphous Selenium Molecular Structure and Photoinduced Crystallization , 1991 .

[24]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[25]  J. Mendoza-Álvarez,et al.  Raman spectrum of monoclinic semiconductor Cu2SnSe3 , 2011 .