Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals
暂无分享,去创建一个
Rakesh Agrawal | Eric A. Stach | E. Stach | R. Agrawal | C. Miskin | Charles J. Hages | Caleb K. Miskin | Wei-Chang Yang | Nathaniel J. Carter | Wei-Chang D. Yang | C. Hages
[1] Rakesh Agrawal,et al. 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .
[2] D. Abou‐Ras,et al. Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .
[3] Wei Wang,et al. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .
[4] Mark S. Lundstrom,et al. Analysis of temperature-dependent current-voltage characteristics for CIGSSe and CZTSSe thin film solar cells from nanocrystal inks , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).
[5] Kaushik Roy Choudhury,et al. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. , 2012, Journal of the American Chemical Society.
[6] Y. Lai,et al. Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method , 2012 .
[7] T. Raadik,et al. Photoluminescence and Raman study of Cu2ZnSn(SexS1 − x)4 monograins for photovoltaic applications , 2011 .
[8] A. D. Cunha,et al. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering , 2011 .
[9] T. Eisenbarth,et al. Route Toward High-Efficiency Single-Phase Cu$_{\bf 2}$ ZnSn(S,Se)$_{\bf 4}$ Thin-Film Solar Cells: Model Experiments and Literature Review , 2011, IEEE Journal of Photovoltaics.
[10] Supratik Guha,et al. The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .
[11] J. Álvarez-García,et al. Raman Spectroscopy on Thin Films for Solar Cells , 2011 .
[12] A. Pérez‐Rodríguez,et al. Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films , 2011 .
[13] Kunihiko Tanaka,et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency , 2011 .
[14] P. Dale,et al. The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.
[15] Rakesh Agrawal,et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.
[16] A. Walsh,et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .
[17] Vahid Akhavan,et al. Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.
[18] B. Parkinson,et al. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.
[19] H. Hillhouse,et al. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.
[20] I. Bineva,et al. Raman Scattering from ZnSe Nanolayers , 2009 .
[21] H. Hillhouse,et al. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.
[22] A. Garg. Concentration dependent vibrational mode behaviour in the mixed crystal system SnSxSe2-x , 1991 .
[23] D. G. Semak,et al. Raman Scattering in Amorphous Selenium Molecular Structure and Photoinduced Crystallization , 1991 .
[24] A. L. Patterson. The Scherrer Formula for X-Ray Particle Size Determination , 1939 .
[25] J. Mendoza-Álvarez,et al. Raman spectrum of monoclinic semiconductor Cu2SnSe3 , 2011 .