Variable dimension Newton-Raphson method

The classical Newton-Raphson method is generalized to solve nonsquare and nonlinear problems of size m/spl times/n with m/spl les/n. Using this generalized Newton-Raphson method as a core, a new variable dimension Newton-Raphson (VDNR) method is developed. The VDNR method is verified to have a better convergence property than the classical Newton-Raphson method by benchmark testing.

[1]  Irwin W. Sandberg,et al.  An algorithm for solving the equations of monotone nonlinear resistive networks , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[2]  S. W. Ng,et al.  A variable dimension Newton method , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[3]  Seth R. Sanders,et al.  Multi-parameter homotopy methods for finding DC operating points of nonlinear circuits , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[4]  Ljiljana Trajkovic,et al.  Artificial parameter homotopy methods for the DC operating point problem , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[6]  Hideki Asai,et al.  A new piecewise-linear simulation algorithm using switch-level pattern dynamics , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[7]  A. Ushida,et al.  An efficient algorithm for solving nonlinear resistive circuits , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[8]  J.S.L. Wong,et al.  SPICE simulation of nonlinear equations and circuits , 1991 .

[9]  Joos Vandewalle,et al.  Variable dimension algorithms for solving resistive circuits , 1990, Int. J. Circuit Theory Appl..

[10]  Lubomir V. Kolev,et al.  An interval method for finding all operating points of non-linear resistive circuits , 1990, Int. J. Circuit Theory Appl..

[11]  L. T. Watson,et al.  Globally convergent homotopy methods: a tutorial , 1989, Conference on Numerical Ordinary Differential Equations.

[12]  L. V. Kolev,et al.  Letter to the editor finding all solutions of non-linear resistive circuit equations via interval analysis , 1984 .

[13]  Alden H. Wright,et al.  The octahedral algorithm, a new simplicial fixed point algorithm , 1981, Math. Program..

[14]  M. Hirsch,et al.  On Algorithms for Solving f(x)=0 , 1979 .

[15]  C. Pan,et al.  A systematic search method for obtaining multiple solutions of simultaneous nonlinear equations , 1975 .

[16]  Jr. A. Willson,et al.  Some aspects of the theory of nonlinear networks , 1973 .

[17]  Adi Ben-Israel A Newton-Raphson method for the solution of systems of equations , 1966 .

[18]  J. Katzenelson An algorithm for solving nonlinear resistor networks , 1965 .

[19]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[20]  E. Kuh,et al.  Solving piecewise-linear equations for resistive networks , 1976 .