Specification of chemosensory neuron subtype identities in Caenorhabditis elegans

Cellular diversity in the nervous system arises from the presence of multiple neuronal subtypes, each of which is specialized to perform a unique function. Work in Caenorhabditis elegans has begun to reveal the pathways that are essential for the specification of identities of neuronal subtypes in its chemosensory system. The functions of each chemosensory neuron subtype are specified by distinct developmental cascades, using molecules from well-conserved transcription factor families. Additional cellular complexity is generated by novel mechanisms that further diversify the identities of the left and right members of a bilateral sensory neuron pair.

[1]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[2]  B. Ye,et al.  unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. , 1998, Development.

[3]  Cori Bargmann,et al.  SEK‐1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans , 2002, EMBO reports.

[4]  Marc Vidal,et al.  Integrating Interactome, Phenome, and Transcriptome Mapping Data for the C. elegans Germline , 2002, Current Biology.

[5]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[6]  O. Hobert,et al.  A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. , 2001, Development.

[7]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[9]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[10]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[11]  P. Sternberg,et al.  Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior , 2003, Development.

[12]  L. Avery,et al.  LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. , 2003, Developmental biology.

[13]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[14]  M. Frasch,et al.  Intersecting signalling and transcriptional pathways in Drosophila heart specification. , 1999, Seminars in cell & developmental biology.

[15]  E. Ricbaude Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors , 1997 .

[16]  S. Mango,et al.  Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4 , 2002, Science.

[17]  T. Barnes,et al.  The Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. , 1997, Development.

[18]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[19]  Thomas M. Jessell,et al.  Groucho-Mediated Transcriptional Repression Establishes Progenitor Cell Pattern and Neuronal Fate in the Ventral Neural Tube , 2001, Cell.

[20]  Randle W. Ware,et al.  The nerve ring of the nematode Caenorhabditis elegans: Sensory input and motor output , 1975 .

[21]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[22]  Cori Bargmann,et al.  Chemotaxis and Thermotaxis , 1997 .

[23]  Cori Bargmann,et al.  Alternative olfactory neuron fates are specified by the LIM homeobox gene lim-4. , 1999, Genes & development.

[24]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[25]  K. Nishikawa,et al.  Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. , 1995, Journal of molecular biology.

[26]  J. Thomas,et al.  Chip and apterous physically interact to form a functional complex during Drosophila development. , 1999, Molecular cell.

[27]  Artur Kania,et al.  Coordinate Roles for LIM Homeobox Genes in Directing the Dorsoventral Trajectory of Motor Axons in the Vertebrate Limb , 2000, Cell.

[28]  S. Pfaff,et al.  Active Suppression of Interneuron Programs within Developing Motor Neurons Revealed by Analysis of Homeodomain Factor HB9 , 1999, Neuron.

[29]  Oliver Hobert,et al.  A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. , 2003, Genes & development.

[30]  M. Chalfie,et al.  mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans , 1988, Cell.

[31]  Samuel L. Pfaff,et al.  LIM Factor Lhx3 Contributes to the Specification of Motor Neuron and Interneuron Identity through Cell-Type-Specific Protein-Protein Interactions , 2002, Cell.

[32]  D. Papatsenko,et al.  Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. , 2003, Developmental cell.

[33]  P. Okkema,et al.  The Caenorhabditis elegans peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. , 2001, Developmental biology.

[34]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[35]  Bret J. Pearson,et al.  erratum: The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[36]  J. Thomas,et al.  The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. , 2000, Development.

[37]  Andrew G Fraser,et al.  Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions , 2003, PLoS biology.

[38]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[39]  R. Baran,et al.  The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression. , 1999, Development.

[40]  P. Sternberg,et al.  Caenorhabditis elegans cog-1 locus encodes GTX/Nkx6.1 homeodomain proteins and regulates multiple aspects of reproductive system development. , 2002, Developmental biology.

[41]  S. Pfaff,et al.  Genetic and epigenetic mechanisms contribute to motor neuron pathfinding , 2000, Nature.

[42]  T. Jessell,et al.  Specification of Motor Neuron Identity by the MNR2 Homeodomain Protein , 1998, Cell.

[43]  Barrett C. Foat,et al.  Identification of genes expressed in C. elegans touch receptor neurons , 2002, Nature.

[44]  A. Varela-Echavarría,et al.  Differential Expression of LIM Homeobox Genes among Motor Neuron Subpopulations in the Developing Chick Brain Stem , 1996, Molecular and Cellular Neuroscience.

[45]  Silvia Arber,et al.  Requirement for the Homeobox Gene Hb9 in the Consolidation of Motor Neuron Identity , 1999, Neuron.

[46]  P. Sengupta,et al.  The worm's sense of smell. Development of functional diversity in the chemosensory system of Caenorhabditis elegans. , 2004, Developmental biology.

[47]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[49]  S. Pfaff,et al.  LIM Homeodomain Factors Lhx3 and Lhx4 Assign Subtype Identities for Motor Neurons , 1998, Cell.

[50]  Susan E. St. Pierre,et al.  Specification of Neuropeptide Cell Identity by the Integration of Retrograde BMP Signaling and a Combinatorial Transcription Factor Code , 2003, Cell.

[51]  J. Rubenstein,et al.  Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. , 2000, Genes & development.

[52]  Cori Bargmann,et al.  The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates , 2001, Cell.

[53]  J. Eisen,et al.  Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. , 1995, Development.

[54]  T. Jessell,et al.  Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes , 1994, Cell.

[55]  P. Sternberg,et al.  Sensory regulation of male mating behavior in caenorhabditis elegans , 1995, Neuron.

[56]  Yuji Kohara,et al.  The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans , 2000, Neuron.

[57]  David M. Miller,et al.  A Primary Culture System for Functional Analysis of C. elegans Neurons and Muscle Cells , 2002, Neuron.

[58]  Samuel L. Pfaff,et al.  Synchronization of Neurogenesis and Motor Neuron Specification by Direct Coupling of bHLH and Homeodomain Transcription Factors , 2003, Neuron.

[59]  Diana S Chu,et al.  A molecular link between gene-specific and chromosome-wide transcriptional repression. , 2002, Genes & development.

[60]  S. Röhrig,et al.  Protein interaction surface of the POU transcription factor UNC‐86 selectively used in touch neurons , 2000, The EMBO journal.

[61]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[62]  Cornelia I. Bargmann,et al.  The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily , 1994, Cell.

[63]  S. Pfaff,et al.  Transcriptional codes and the control of neuronal identity. , 2002, Annual review of neuroscience.

[64]  O. Hobert,et al.  The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. , 2001, Development.

[65]  A. Fire,et al.  Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. , 2001, Gene.