Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System

The new crystalline material family, lithium superionic conductor (thio-LISICON), was found in the Li 2 S-GeS 2 -P 2 S 5 system. The solid solution member x x 0.75 in Li 4-x Ge 1-x P x S 4 shows the highest conductivity of 2.2 x 10 -3 S cm -1 at 25°C of any sintered ceramic together with negligible electronic conductivity, high electrochemical stability, no reaction with lithium metal, and no phase transition up to 500°C. Its material design concepts of changing constituent ions with various ionic radii, valence, and polarizability are described.

[1]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[2]  S. Kondo,et al.  Neutron Diffraction Study of High Ionic Conductor Rb4Cu16I7+xCl13-x at 50-300 K: Correlation with Ionic Conductivity , 1993 .

[3]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[4]  R. Huggins,et al.  Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .

[5]  E. Morán,et al.  Lithium-ion conductivity in the novel La1/3−xLi3xNbO3 solid solution with perovskite-related structure , 1999 .

[6]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[7]  R. Bartholomew,et al.  Electrical properties of new glasses based on the Li2S–SiS2 system , 1999 .

[8]  A. Rabenau Lithium nitride and related materials case study of the use of modern solid state research techniques , 1982 .

[9]  S. Kondo,et al.  Application of Li3PO4-Li2S-SiS2 glass to the solid state secondary batteries , 1995 .

[10]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[11]  Jaephil Cho,et al.  Electrochemical Properties of GeS2‐Based Glass‐Polymer Composite Electrolytes for Lithium‐Ion Batteries , 1998 .

[12]  S. Kondo,et al.  Lithium iron sulfide as an electrode material in a solid state lithium battery , 1999 .

[13]  W. Weppner,et al.  Li9SiAlO8: A Lithium Ion Electrolyte for Voltages above 5.4 V , 1996 .

[14]  B. Owens,et al.  High Conductivity Solid Electrolyte System Rbl ‐ AgI , 1970 .

[15]  T. Minami,et al.  Thermal and electrical properties of rapidly quenched glasses in the systems Li2S_SiS2_LixMOy (LixMOy = Li4SiO4, Li2SO4) , 1995 .

[16]  S. Kondo,et al.  New lithium ion conductors based on Li2S-SiS2 system , 1992 .

[17]  S. Yamada,et al.  Solid‐State Ionics: High Copper Ion Conductivity of the System CuCl ‐ CuI ‐ RbCl , 1979 .

[18]  P. Bruce,et al.  Structure determination of LISICON solid solutions by powder neutron diffraction , 1988 .

[19]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[20]  R. Mercier,et al.  Structure du tetrathiophosphate de lithium , 1982 .

[21]  S. Skaarup,et al.  Ionic conductivity of pure and doped Li3N , 1983 .

[22]  J. Kennedy,et al.  Glass-forming region and structure in SiS2Li2SLiX(X= Br, I) , 1987 .

[23]  T. Minami,et al.  Mechanochemical Synthesis of the High Lithium Ion Conductive Amorphous Materials in the Systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4 , 2000 .

[24]  S. Kondo,et al.  Rechargeable solid state battery with lithium conductive glass, Li3PO4Li2SSiS2 , 1994 .

[25]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .