Expressing Computational Complexity in Constructive Type Theory

It is notoriously hard to express computational complexity properties of programs in programming logics based on a semantics which respects extensional function equality. This is a serious impediment to certain key applications of programming logics, even those which apply very well otherwise.

[1]  Robert L. Constable,et al.  The semantics of reflected proof , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[2]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[3]  Klaus Weihrauch,et al.  A Simple and Powerful Approach for Studying Constructivity, Computability, and Complexity , 1992, Constructivity in Computer Science.

[4]  S. Feferman A Language and Axioms for Explicit Mathematics , 1975 .

[5]  Andre Scedrov,et al.  Bounded Linear Logic , 1991 .

[6]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[7]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[8]  Robert L. Constable,et al.  The Type Theory of PL/CV3 , 1984, TOPL.

[9]  Robert L. Constable,et al.  Proofs as programs , 1985, TOPL.

[10]  Stephen A. Cook,et al.  Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.

[11]  Robert L. Constable,et al.  Partial Objects In Constructive Type Theory , 1987, Logic in Computer Science.

[12]  Bruce M. Kapron,et al.  Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.

[13]  Robert L. Constable,et al.  Recursive Definitions in Type Theory , 1985, Logic of Programs.

[14]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[15]  Andrzej Grzegorczyk,et al.  Recursive Objects in all Finite Types , 1964 .

[16]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[17]  Daniel Leivant,et al.  Functions Over Free Algebras Definable in the Simply Typed lambda Calculus , 1993, Theor. Comput. Sci..

[18]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[19]  P. Dybjer Inductive sets and families in Martin-Lo¨f's type theory and their set-theoretic semantics , 1991 .

[20]  Samuel R. Buss,et al.  The Polynomial Hierarchy and Intuitionistic Bounded Arithmetic , 1986, SCT.

[21]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[22]  Daniel Leivant,et al.  Stratified functional programs and computational complexity , 1993, POPL '93.

[23]  Robert L. Constable,et al.  Type two computational complexity , 1973, STOC.

[24]  Frank Pfenning,et al.  Inductively Defined Types in the Calculus of Constructions , 1989, Mathematical Foundations of Programming Semantics.

[25]  Douglas J. Howe On computational open-endedness in Martin-Lof's type theory , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[26]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[27]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[28]  Kurt Mehlhorn Polynomial and Abstract Subrecursive Classes , 1976, J. Comput. Syst. Sci..