A dynamic vertical partitioning approach for distributed database system

Vertical and horizontal partitioning are physical database design techniques that can considerably improve query response time in distributed database system. Although most current database management systems support horizontal partitioning, they do not implement vertical partitioning bacause it is based on user queries and it is necessary to monitor queries in order to generate a good vertical partitioning solution. In this paper, we use active rules to develop an active system for dynamic vertical partitioning of distributed database. The system vertically fragment and re-fragment a database without intervention of a database administrator. Experiments on a Benchmark database TPC-H demonstrate acceptable query response time.

[1]  Le Gruenwald,et al.  Dynamic Clustering in Object-Oriented Databases: An Advocacy for Simplicity , 2000, Objects and Databases.

[2]  Wesam Almobaideen,et al.  A Dynamic Object Fragmentation and Replication Algorithm In Distributed Database Systems , 2007 .

[3]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[4]  Vivek R. Narasayya,et al.  Automatic physical design tuning: workload as a sequence , 2006, SIGMOD Conference.

[5]  Benoît Dageville,et al.  Automatic SQL Tuning in Oracle 10g , 2004, VLDB.

[6]  Sam Lightstone,et al.  DB2 Design Advisor: Integrated Automatic Physical Database Design , 2004, VLDB.

[7]  Surajit Chaudhuri,et al.  Database Tuning Advisor for Microsoft SQL Server 2005 , 2004, VLDB.

[8]  Liu Zhenjie,et al.  Adaptive reorganization of database structures through dynamic vertical partitioning of relational tables , 2007 .

[9]  Michael Eckert,et al.  Reactive Rules on the Web , 2007, Reasoning Web.

[10]  Le Gruenwald,et al.  Using cluster computing to support automatic and dynamic database clustering , 2008, 2008 IEEE International Conference on Cluster Computing.

[11]  Shamkant B. Navathe,et al.  Vertical partitioning algorithms for database design , 1984, TODS.

[12]  Vivek R. Narasayya,et al.  Integrating vertical and horizontal partitioning into automated physical database design , 2004, SIGMOD '04.

[13]  Le Gruenwald,et al.  Research issues in automatic database clustering , 2005, SGMD.

[14]  Roger King,et al.  Self-adaptive, on-line reclustering of complex object data , 1994, SIGMOD '94.

[15]  Anastasia Ailamaki,et al.  AutoPart: automating schema design for large scientific databases using data partitioning , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[16]  Le Gruenwald,et al.  A Clustering Technique for Object Oriented Databases , 1997, DEXA.

[17]  Surajit Chaudhuri,et al.  SQLCM: a continuous monitoring framework for relational database engines , 2004, Proceedings. 20th International Conference on Data Engineering.