Synaptic plasticity: LTP and LTD

[1]  R. Malenka,et al.  Activity-dependent enhancement of synaptic transmission in hippocampal slices treated with the phosphatase inhibitor calyculin A , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  R. Malenka,et al.  Induction in the rat hippocampus of long-term potentiation (LTP) and long-term depression (LTD) in the presence of a nitric oxide synthase inhibitor , 1994, Neuroscience Letters.

[3]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[4]  R. Nicoll,et al.  MCPG Antagonizes Metabotropic Glutamate Receptors but not Long‐term Potentiation in the Hippocampus , 1994, The European journal of neuroscience.

[5]  M. Bear,et al.  Homosynaptic long-term depression in the visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  G. Collingridge,et al.  A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation , 1994, Nature.

[7]  W. Abraham,et al.  Flip side of synaptic plasticity: Long‐term depression mechanisms in the hippocampus , 1994, Hippocampus.

[8]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[9]  Michael J. Rowan,et al.  Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation , 1994, Nature.

[10]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Madison,et al.  Locally distributed synaptic potentiation in the hippocampus. , 1994, Science.

[12]  Kunio Kato,et al.  Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation , 1994, Nature.

[13]  C. Stevens Going down the way you came up , 1993, Current Biology.

[14]  L. Aniksztejn,et al.  (RS)-alpha-methyl-4-carboxyphenylglycine neither prevents induction of LTP nor antagonizes metabotropic glutamate receptors in CA1 hippocampal neurons. , 1993, Journal of neurophysiology.

[15]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[16]  K. Murphy,et al.  The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent , 1993, Neuron.

[17]  R. Nicoll,et al.  The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation , 1993, Neuron.

[18]  D. Lovinger,et al.  Short- and long-term synaptic depression in rat neostriatum. , 1993, Journal of neurophysiology.

[19]  T. Teyler,et al.  Presynaptic mechanism for heterosynaptic, posttetanic depression in area CA1 of rat hippocampus , 1993, Synapse.

[20]  T. Bliss,et al.  Failure to Induce Long‐term Depression by an Anti‐Correlation Procedure in Area CA1 of the Rat Hippocampal Slice , 1993, The European journal of neuroscience.

[21]  P. Chapman,et al.  Nitric oxide synthase inhibitors block long-term potentiation induced by weak but not strong tetanic stimulation at physiological brain temperatures in rat hippocampal slices , 1993, Neuroscience Letters.

[22]  J. H. Schwartz Cognitive kinases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Y. Izumi,et al.  Nitric oxide and long-term synaptic depression in the rat hippocampus. , 1993, Neuroreport.

[24]  G. Collingridge,et al.  Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. , 1993, The Journal of physiology.

[25]  C. Zorumski,et al.  Nitric oxide inhibitors facilitate the induction of hippocampal long-term potentiation by modulating NMDA responses. , 1993, Journal of neurophysiology.

[26]  O. Sergueeva,et al.  An antagonist of glutamate metabotropic receptors, (RS)-α-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices , 1993, Neuropharmacology.

[27]  P. Gean,et al.  d-2-amino-5-phosphonovaleate blocks induction of long-term depression of the NMDA receptor-mediated synaptic component in rat hippocampus , 1993, Neuroscience Letters.

[28]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[29]  W. Abraham,et al.  Comparison of associative and non‐associative conditioning procedures in the induction of LTD in CA1 of the hippocampus , 1993, Synapse.

[30]  F. Crépel,et al.  Long‐term Depression Requires Nitric Oxide and Guanosine 3′:5’Cyclic Monophosphate Production in Rat Cerebellar Purkinje Cells , 1993, The European journal of neuroscience.

[31]  D. Muller,et al.  Enhancement of AMPA‐mediated Synaptic Transmission by the Protein Phosphatase Inhibitor Calyculin A in Rat Hippocampal Slices , 1993, The European journal of neuroscience.

[32]  Charles F. Stevens,et al.  Reversal of long-term potentiation by inhibitors of haem oxygenase , 1993, Nature.

[33]  J. Sweatt,et al.  Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. , 1993, Neuroreport.

[34]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  E. Kandel,et al.  Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. , 1993, Science.

[36]  M. Bear,et al.  Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. , 1993, Science.

[37]  Tim V. P. Bliss,et al.  The search for retrograde messengers in long-term potentiation , 1993 .

[38]  D. Linden,et al.  Cellular mechanisms of long-term depression in the cerebellum , 1993, Current Opinion in Neurobiology.

[39]  G. Collingridge,et al.  Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors , 1993, Nature.

[40]  T. Teyler,et al.  Role of adenosine in heterosynaptic, posttetanic depression in area CA1 of hippocampus , 1993, Neuroscience Letters.

[41]  P. Stanton,et al.  Priming of homosynaptic long-term depression in hippocampus by previous synaptic activity. , 1993, Neuroreport.

[42]  Antonio Pisani,et al.  Lithium Treatment Blocks Long-Term Synaptic Depression in the Striatum , 1993, Neuron.

[43]  Tadaharu Tsumoto,et al.  Long-term depression in cerebral cortex: a possible substrate of “forgetting” that should not be forgotten , 1993, Neuroscience Research.

[44]  N. Kato Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Malenka,et al.  Long-term depression: not so depressing after all. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Musleh,et al.  Further studies concerning the role of nitric oxide in LTP induction and maintenance , 1993, Synapse.

[47]  J. Disterhoft,et al.  Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. , 1993, Journal of neurophysiology.

[48]  G. Collingridge,et al.  Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus , 1993, Neuropharmacology.

[49]  S. Snyder,et al.  Carbon monoxide: a putative neural messenger. , 1993, Science.

[50]  Gary Lynch,et al.  Reversal of LTP by theta frequency stimulation , 1993, Brain Research.

[51]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[52]  Y. Sekino,et al.  Selective inhibition of homosynaptic depression in a tetanized pathway by an adenosine A1 blocker in the CA1 region of rat hippocampal slice , 1992, Neuroscience Letters.

[53]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[54]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[55]  K. Stratford,et al.  Presynaptic release probability influences the locus of long-term potentiation , 1992, Nature.

[56]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[57]  K. Hoyt,et al.  Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons , 1992, Brain Research.

[58]  Y. Ben-Ari,et al.  Protein kinase C modulation of NMDA currents: an important link for LTP induction , 1992, Trends in Neurosciences.

[59]  D. Clifford,et al.  Inhibition of long-term potentiation by NMDA-mediated nitric oxide release. , 1992, Science.

[60]  V. Gribkoff,et al.  Evidence for nitric oxide synthase inhibitor-sensitive and insensitive hippocampal synaptic potentiation. , 1992, Journal of neurophysiology.

[61]  R. Malenka,et al.  Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation , 1992, Neuron.

[62]  W. Abraham,et al.  Priming of associative long-term depression in the dentate gyrus by θ frequency synaptic activity , 1992, Neuron.

[63]  Y. Ben-Ari,et al.  Quisqualate Metabotropic Receptors Modulate NMDA Currents and Facilitate Induction of Long‐Term Potentiation Through Protein Kinase C , 1992, The European journal of neuroscience.

[64]  S. Lipton,et al.  Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex , 1992, Neuron.

[65]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[66]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[67]  G. Böhme,et al.  A Role for Nitric Oxide in Long‐term Potentiation , 1992, The European journal of neuroscience.

[68]  G. Lynch,et al.  Antagonists of the Platelet‐activating Factor Receptor Block Long‐term Potentiation in Hippocampal Slices , 1992, The European journal of neuroscience.

[69]  O. Manzoni,et al.  Nitric oxide-induced blockade of NMDA receptors , 1992, Neuron.

[70]  G. Barrionuevo,et al.  Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD. , 1992, Journal of neurophysiology.

[71]  George L. Wilcox,et al.  The role of nitric oxide in hippocampal long-term potentiation , 1992, Neuron.

[72]  D. Linden,et al.  Long‐term Depression of Glutamate Currents in Cultured Cerebellar Purkinje Neurons Does Not Require Nitric Oxide Signalling , 1992, The European journal of neuroscience.

[73]  E. Kandel,et al.  Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Madison,et al.  A requirement for the intercellular messenger nitric oxide in long-term potentiation. , 1991, Science.

[75]  R. Malenka,et al.  Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. , 1991, The Journal of physiology.

[76]  D. Faber,et al.  Quantal analysis and synaptic efficacy in the CNS , 1991, Trends in Neurosciences.

[77]  Jeffery R. Wickens,et al.  The involvement of L-type calcium channels in heterosynaptic long-term depression in the hippocampus , 1991, Neuroscience Letters.

[78]  M. Bear,et al.  Stimulation of Phosphoinositide Turnover by Excitatory Amino Acids , 1991, Annals of the New York Academy of Sciences.

[79]  Hiroshi Kato,et al.  Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices , 1991, Brain Research.

[80]  G. Böhme,et al.  Possible involvement of nitric oxide in long-term potentiation. , 1991, European journal of pharmacology.

[81]  P. Conn,et al.  Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. , 1991, Journal of neurophysiology.

[82]  E. Kandel,et al.  Learning-related synaptic plasticity: LTP and LTD , 1991, Current Opinion in Neurobiology.

[83]  J. Wickens,et al.  Heterosynaptic long-term depression is facilitated by blockade of inhibition in area CA1 of the hippocampus , 1991, Brain Research.

[84]  C. Stevens,et al.  A depression long awaited , 1990, Nature.

[85]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[86]  A. Williamson,et al.  A prolonged post-tetanic hyperpolarization in rat hippocampal pyramidal cells in vitro , 1990, Brain Research.

[87]  Gary Lynch,et al.  Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation , 1990, Brain Research.

[88]  T. Bliss,et al.  Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: An in vivo study in the dentate gyrus of the rat , 1989, Neuroscience.

[89]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[90]  A. Aertsen,et al.  Synaptic plasticity in rat hippocampal slice cultures: local "Hebbian" conjunction of pre- and postsynaptic stimulation leads to distributed synaptic enhancement. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Schoepp,et al.  Comparison of Excitatory Amino Acid‐Stimulated Phosphoinositide Hydrolysis and N‐[3H]Acetylaspartylglutamate Binding in Rat Brain: Selective Inhibition of Phosphoinositide Hydrolysis by 2‐Amino‐3‐Phosphonopropionate , 1989, Journal of neurochemistry.

[92]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[93]  R. Nicoll,et al.  NMDA application potentiates synaptic transmission in the hippocampus , 1988, Nature.

[94]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[95]  T. Bliss,et al.  Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by d(−)aminophosphonovalerate , 1987, Neuroscience.

[96]  T. Bliss,et al.  Correlation between long‐term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. , 1986, The Journal of physiology.

[97]  E. Costa,et al.  Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[98]  G. V. Goddard,et al.  Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression , 1983, Nature.

[99]  G. Lynch,et al.  The effects of repetitive low frequency stimulation on control and "potentiated" synaptic responses in the hippocampus. , 1980, Life sciences.

[100]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[101]  G. Lynch,et al.  Long‐term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. , 1978, The Journal of physiology.

[102]  T. Teyler,et al.  Transient heterosynaptic depression in the hippocampal slice , 1978, Brain Research Bulletin.

[103]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[104]  G. Lynch,et al.  Heterosynaptic depression: a postsynaptic correlate of long-term potentiation , 1977, Nature.

[105]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[106]  N. Hamasaki,et al.  2,3-Diphosphoglycerate content of human arterial and venous blood. , 1971, Nature: New biology.

[107]  D. Madison,et al.  Nitric oxide and synaptic function. , 1994, Annual review of neuroscience.

[108]  G Christofi,et al.  The postsynaptic induction of nonassociative long-term depression of excitatory synaptic transmission in rat hippocampal slices. , 1993, Journal of neurophysiology.

[109]  R. Nicoll,et al.  Mechanisms underlying long-term potentiation of synaptic transmission. , 1991, Annual review of neuroscience.