On‐chip laser processing for the development of multifunctional microfluidic chips

In the development of microfluidic chips, conventional 2D processing technologies contribute to the manufacturing of basic microchannel networks. Nevertheless, in the pursuit of versatile microfluidic chips, flexible integration of multifunctional components within a tiny chip is still challenging because a chip containing micro-channels is a non-flat substrate. Recently, on-chip laser processing (OCLP) technology has emerged as an appealing alternative to achieve chip functionalization through in situ fabrication of 3D microstructures. Here, the recent development of OCLP-enabled multifunctional microfluidic chips, including several accessible photochemical/photophysical schemes, and photosensitive materials permiting OCLP, is reviewed. To demonstrate the capability of OCLP technology, a series of typical micro-components fabricated using OCLP are introduced. The prospects and current challenges of this field are discussed.

[1]  Lei Zhang,et al.  Protein-Based Multi-Mode Interference Optical Micro-Splitters , 2016, IEEE Photonics Technology Letters.

[2]  Bob S. Carter,et al.  Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma , 2015, Nature Communications.

[3]  Patrice Baldeck,et al.  Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels , 2011 .

[4]  Qidai Chen,et al.  Protein-based soft micro-optics fabricated by femtosecond laser direct writing , 2014, Light: Science & Applications.

[5]  Ester Segal,et al.  Oxidized Porous Silicon Nanostructures Enabling Electrokinetic Transport for Enhanced DNA Detection , 2015 .

[6]  Microfluidic Single-Cell Analysis with Affinity Beads. , 2015, Small.

[7]  Aaron R. Wheeler,et al.  Digital microfluidic immunocytochemistry in single cells , 2015, Nature Communications.

[8]  Chang Lu,et al.  A microfluidic device for epigenomic profiling using 100 cells , 2015, Nature Methods.

[9]  Koji Sugioka,et al.  Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. , 2004, Optics letters.

[10]  Hermann E. Gaub,et al.  From Genes to Protein Mechanics on a Chip , 2014, Nature Methods.

[11]  Hong Xia,et al.  Ferrofluids for Fabrication of Remotely Controllable Micro‐Nanomachines by Two‐Photon Polymerization , 2010, Advanced materials.

[12]  Qidai Chen,et al.  Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach , 2015, Scientific Reports.

[13]  Yong‐Lai Zhang,et al.  Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing , 2015 .

[14]  Shih-Feng Tseng,et al.  Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies , 2014 .

[15]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[16]  P. Laporta,et al.  Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching , 2006 .

[17]  Hong-Bo Sun,et al.  Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. , 2011, Lab on a chip.

[18]  Koji Sugioka,et al.  Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. , 2014, Lab on a chip.

[19]  Joanna Y. Ip,et al.  Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis , 2015 .

[20]  Razvan Stoian,et al.  Laser-induced modification of transparent crystals and glasses , 2010 .

[21]  Koji Sugioka,et al.  Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining , 2006 .

[22]  Roberta Ramponi,et al.  Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices , 2013 .

[23]  S. Sánchez,et al.  Nano-photocatalysts in microfluidics, energy conversion and environmental applications. , 2015, Lab on a chip.

[24]  Vinod Subramaniam,et al.  Combining optical tweezers and scanning probe microscopy to study DNA–protein interactions , 2007, Microscopy research and technique.

[25]  C. Dong,et al.  Multiphoton fabrication of freeform polymer microstructures with gold nanorods. , 2010, Optics express.

[26]  A. Miyawaki,et al.  Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass , 2008, Biomedical microdevices.

[27]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[28]  Virgilio Mattoli,et al.  Rapid and Controllable Digital Microfluidic Heating by Surface Acoustic Waves , 2015 .

[29]  Wen-Fei Dong,et al.  Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. , 2013, Lab on a chip.

[30]  Pao Tai Lin,et al.  Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. , 2014, Nano letters.

[31]  Saulius Juodkazis,et al.  3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation , 2014, Micromachines.

[32]  Yi-Kuen Lee,et al.  Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. , 2011, Angewandte Chemie.

[33]  Anders Kristensen,et al.  All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp. , 2012, Lab on a chip.

[34]  Satoru Shoji,et al.  3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography , 2013 .

[35]  Daniel F. Hayes,et al.  Sensitive capture of circulating tumour cells by functionalised graphene oxide nanosheets , 2013, Nature nanotechnology.

[36]  A. Cleland,et al.  High-speed discrimination and sorting of submicron particles using a microfluidic device. , 2014, Nano letters.

[37]  T. Özel,et al.  Effect of Fluence and Pulse Overlapping on Fabrication of Microchannels in PMMA/PDMS Via UV Laser Micromachining: Modeling and Experimentation , 2015 .

[38]  Koji Sugioka,et al.  Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. , 2010, Optics letters.

[39]  J. Grate,et al.  Solvent immersion imprint lithography. , 2014, Lab on a chip.

[40]  Koji Sugioka,et al.  Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. , 2012, Lab on a chip.

[41]  A. Miyawaki,et al.  3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. , 2011, Lab on a chip.

[42]  X. Duan,et al.  Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction , 2013 .

[43]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[44]  Chung-Jen Chung,et al.  Application of metal film protection to microfluidic chip fabrication using CO2 laser ablation , 2014 .

[45]  T. Yoko,et al.  Three-Dimensional Microdrilling of Glass by Multiphoton Process and Chemical Etching , 1999 .

[46]  Byoungdeog Choi,et al.  Ultrafast laser microfabrication of a trapping device for colorectal cancer cells , 2015 .

[47]  A. Piskarskas,et al.  Ultrafast laser nanostructuring of photopolymers: a decade of advances , 2013 .

[48]  Hong-Bo Sun,et al.  Tunable protein harmonic diffractive micro-optical elements. , 2012, Optics letters.

[49]  Koji Sugioka,et al.  Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. , 2013, Optics letters.

[50]  B. Chan,et al.  Femto‐Second Laser‐Based Free Writing of 3D Protein Microstructures and Micropatterns with Sub‐Micrometer Features: A Study on Voxels, Porosity, and Cytocompatibility , 2014 .

[51]  Nithyanand Kota,et al.  Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. , 2011, Lab on a chip.

[52]  Hong Xia,et al.  High performance magnetically controllable microturbines. , 2010, Lab on a chip.

[53]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[54]  Hong-Bo Sun,et al.  Aqueous multiphoton lithography with multifunctional silk-centred bio-resists , 2015, Nature Communications.

[55]  Satoshi Kawata,et al.  Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures , 2008 .

[56]  Suxia Zhang,et al.  Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor , 2005 .

[57]  Roberto Osellame,et al.  Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. , 2014, Lab on a chip.

[58]  Jarno Salonen,et al.  Inhibition of Multidrug Resistance of Cancer Cells by Co‐Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes , 2015 .

[59]  Holger Gerhardt,et al.  Tissue engineering: Blood vessels on a chip , 2012, Nature.

[60]  F. He,et al.  Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. , 2013, Lab on a chip.

[61]  Ran Zhang,et al.  A SERS‐active microfluidic device with tunable surface plasmon resonances , 2011, Electrophoresis.

[62]  Hiroaki Misawa,et al.  Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. , 2014, ACS nano.

[63]  Hong Xia,et al.  Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays , 2009 .

[64]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[65]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[66]  K. Sugioka,et al.  Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. , 2012, Optics letters.

[67]  Satoshi Kawata,et al.  3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. , 2009, Small.

[68]  Koji Sugioka,et al.  Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips , 2010 .

[69]  Yan Li,et al.  Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. , 2005, Optics express.

[70]  R. Jaenisch,et al.  Microfluidic Control of Cell Pairing and Fusion , 2009, Nature Methods.

[71]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[72]  K. Eliceiri,et al.  Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. , 2012, Biomacromolecules.

[73]  Cheng-Hsiang Lin,et al.  Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing , 2009 .

[74]  Satoshi Kawata,et al.  Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication , 2009 .

[75]  Carlos D. Garcia,et al.  Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. , 2014, Electrophoresis.

[76]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[77]  Richard L. Brutchey,et al.  Flow invariant droplet formation for stable parallel microreactors , 2016, Nature Communications.

[78]  R. T. Hill,et al.  Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser. , 2006, Analytical chemistry.

[79]  Paul J. Campagnola,et al.  Submicron Multiphoton Free-Form Fabrication of Proteins and Polymers: Studies of Reaction Efficiencies and Applications in Sustained Release , 2000 .

[80]  Yves Bellouard,et al.  Tailored surface birefringence by femtosecond laser assisted wet etching. , 2015, Optics express.

[81]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[82]  C. Mirkin,et al.  Plasmon-mediated synthesis of silver triangular bipyramids. , 2009, Angewandte Chemie.

[83]  J. Shear,et al.  Catalytic three-dimensional protein architectures. , 2005, Analytical chemistry.

[84]  V. Chiș,et al.  In situ laser-induced photochemical silver substrate synthesis and sequential SERS detection in a flow cell , 2011, Analytical and bioanalytical chemistry.

[85]  Hong-Bo Sun,et al.  Dynamically tunable protein microlenses. , 2012, Angewandte Chemie.

[86]  Hong Ding,et al.  On‐Chip Catalytic Microreactors for Modern Catalysis Research , 2013 .

[87]  A. Ajdari,et al.  Boosting migration of large particles by solute contrasts. , 2008, Nature materials.

[88]  Jason B Shear,et al.  Guiding neuronal development with in situ microfabrication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Ran Zhang,et al.  "Overpass" at the junction of a crossed microchannel: an enabler for 3D microfluidic chips. , 2012, Lab on a chip.

[90]  Andreas Hierlemann,et al.  Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis , 2014, Nature Communications.

[91]  S. Prakash,et al.  Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation , 2015 .

[92]  Jason B Shear,et al.  Multiphoton fabrication of chemically responsive protein hydrogels for microactuation , 2008, Proceedings of the National Academy of Sciences.

[93]  Carlos D. Garcia,et al.  Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving , 2014 .

[94]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[95]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[96]  S. Digumarthy,et al.  Isolation of rare circulating tumour cells in cancer patients by microchip technology , 2007, Nature.

[97]  N. Elvassore,et al.  Functional differentiation of human pluripotent stem cells on a chip , 2015, Nature Methods.

[98]  Yasuyuki Tsuboi,et al.  Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping. , 2014, The journal of physical chemistry letters.

[99]  Aiko Narazaki,et al.  Formation of a TiO2 micronetwork on a UV-absorbing SiO2-based glass surface by excimer laser irradiation , 2005 .

[100]  Koji Sugioka,et al.  In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting , 2015 .

[101]  Hong Xia,et al.  Remote manipulation of micronanomachines containing magnetic nanoparticles. , 2009, Optics letters.

[102]  Spatially Localized Photoluminescence at 1.5 Micrometers Wavelength in Direct Laser Written Optical Nanostructures , 2008 .

[103]  C. Mirkin,et al.  Plasmon-mediated synthesis of heterometallic nanorods and icosahedra. , 2011, Angewandte Chemie.

[104]  Ming-Jeng Pan,et al.  Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip , 2014 .

[105]  D. Diamond,et al.  Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. , 2014, Biomicrofluidics.

[106]  Hwan Chul Jeon,et al.  Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications , 2012 .

[107]  K. Sugioka,et al.  Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip , 2014 .

[108]  Kevin Ke,et al.  Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. , 2005, Analytical chemistry.

[109]  K. Sugioka,et al.  Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture , 2005 .

[110]  Koji Sugioka,et al.  Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. , 2015, Lab on a chip.

[111]  Hong-Bo Sun,et al.  Solvent response of polymers for micromachine manipulation. , 2011, Physical chemistry chemical physics : PCCP.

[112]  Saulius Juodkazis,et al.  Femtosecond laser assisted etching of quartz: microstructuring from inside , 2006 .

[113]  Shoji Maruo,et al.  Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. , 2008, Optics express.

[114]  S. Maerkl,et al.  LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. , 2014, Nano letters.

[115]  Hongkai Wu,et al.  Recent Developments in Microfluidics for Cell Studies , 2014, Advanced materials.

[116]  J. Collins,et al.  Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro , 2014, Nature Methods.

[117]  Hwan Chul Jeon,et al.  Hierarchically Ordered Arrays of Noncircular Silicon Nanowires Featured by Holographic Lithography Toward a High‐Fidelity Sensing Platform , 2012 .

[118]  Sebastian M. Bonk,et al.  Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses , 2015, Micromachines.

[119]  Robert Langer,et al.  Microfluidic technologies for accelerating the clinical translation of nanoparticles. , 2012, Nature nanotechnology.

[120]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[121]  S. Matsuo,et al.  Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates , 2009 .

[122]  S. Hussain,et al.  Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. , 2009, ACS nano.

[123]  Alex O Ibhadon,et al.  Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. , 2015, Lab on a chip.

[124]  D. Grier A revolution in optical manipulation , 2003, Nature.

[125]  T. Tatsuma,et al.  Nanoimaging of localized plasmon-induced charge separation. , 2011, Chemical communications.

[126]  Qidai Chen,et al.  Laser patterning of conductive gold micronanostructures from nanodots. , 2012, Nanoscale.

[127]  Hong-Bo Sun,et al.  Customization of Protein Single Nanowires for Optical Biosensing. , 2015, Small.

[128]  Andriy Kovalenko,et al.  Three-dimensional Rism Theory for Molecular Liquids and Solid-Liquid Interfaces , 2004 .

[129]  Dong-Yol Yang,et al.  Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. , 2011, Lab on a chip.

[130]  G. Luo,et al.  A novel microfluidic approach for preparing chitosan-silica core-shell hybrid microspheres with controlled structures and their catalytic performance. , 2014, Lab on a chip.

[131]  R. Osellame,et al.  Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. , 2012, Lab on a chip.

[132]  Jeff Squier,et al.  Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. , 2009, Optics express.

[133]  Marc P. Y. Desmulliez,et al.  CO2 Laser Manufacturing of Miniaturised Lenses for Lab-on-a-Chip Systems , 2014, Micromachines.

[134]  S. Kawata,et al.  Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure , 2006 .

[135]  C. Lim,et al.  Rapid quantification of live cell receptors using bioluminescence in a flow-based microfluidic device. , 2015, Small.

[136]  Hong Xia,et al.  Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. , 2009, Lab on a chip.

[137]  C Koos,et al.  All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers. , 2015, Lab on a chip.

[138]  C. Dong,et al.  Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures. , 2011, Optics express.

[139]  Peter R. Herman,et al.  Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica. , 2012, Optics letters.

[140]  S. Soper,et al.  Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. , 2011, Lab on a chip.

[141]  M. Sitti,et al.  Untethered micro-robotic coding of three-dimensional material composition , 2014, Nature Communications.

[142]  Joanna Aizenberg,et al.  Direct writing and actuation of three-dimensionally patterned hydrogel pads on micropillar supports. , 2011, Angewandte Chemie.

[143]  Kishan Dholakia,et al.  Optical micromanipulation takes hold , 2006 .

[144]  Koji Sugioka,et al.  Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining , 2011 .

[145]  Xian-Zi Dong,et al.  Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing , 2007 .

[146]  Koji Sugioka,et al.  Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining , 2014 .

[147]  D. Ingber,et al.  Reconstituting Organ-Level Lung Functions on a Chip , 2010, Science.

[148]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[149]  Hong‐Bo Sun,et al.  Multiple-spot parallel processing for laser micronanofabrication , 2005 .

[150]  J. Behrends,et al.  Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. , 2015, Small.

[151]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[152]  Hyunjae Lee,et al.  Capillarity Guided Patterning of Microliquids. , 2015, Small.

[153]  Saeid Nahavandi,et al.  Microfluidic platforms for the investigation of intercellular signalling mechanisms. , 2014, Small.

[154]  F. He,et al.  Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. , 2010, Optics letters.

[155]  Hwan Chul Jeon,et al.  Optically tunable arrayed structures for highly sensitive plasmonic detection via simplified holographic lithography , 2012 .

[156]  Hong-Bo Sun,et al.  On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring. , 2012, Chemical communications.

[157]  F. He,et al.  A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining , 2011 .

[158]  Jon P. Longtin,et al.  Ultrafast laser machining of tapered microchannels in glass and PDMS , 2012 .

[159]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[160]  A. Wheeler,et al.  Dynamic Fluoroalkyl Polyethylene Glycol Co‐Polymers: A New Strategy for Reducing Protein Adhesion in Lab‐on‐a‐Chip Devices , 2015 .

[161]  Koji Sugioka,et al.  Integrated microchips for biological analysis fabricated by femtosecond laser direct writing , 2011 .

[162]  Matthias Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[163]  K. Ren,et al.  Materials for microfluidic chip fabrication. , 2013, Accounts of chemical research.

[164]  Jenny Clark,et al.  Femtosecond laser fabrication of microfluidic channels for organic photonic devices. , 2009, Applied optics.

[165]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[166]  A. Athanassiou,et al.  Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals , 2012 .

[167]  Joanna Aizenberg,et al.  Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. , 2012, Journal of the American Chemical Society.

[168]  Jarno Salonen,et al.  On‐Chip Self‐Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications , 2015 .

[169]  C. Dong,et al.  Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry. , 2011, Optics express.

[170]  Yong‐Lai Zhang,et al.  Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing , 2013 .

[171]  Charlie Gosse,et al.  Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication , 2010 .

[172]  Y. Bellouard,et al.  Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. , 2004, Optics express.

[173]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[174]  Shigeki Matsuo,et al.  Femtosecond laser-assisted etching of Pyrex glass with aqueous solution of KOH , 2009 .

[175]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[176]  Carl L Hansen,et al.  Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections. , 2010, Lab on a chip.

[177]  Koji Sugioka,et al.  Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass , 2014, Sensors.

[178]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[179]  Xing Zhang,et al.  Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway , 2015, Science.

[180]  Yanhui Zhao,et al.  Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions , 2014, Nano letters.

[181]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[182]  Aleksandr Ovsianikov,et al.  Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. , 2011, Biomacromolecules.

[183]  Yong‐Lai Zhang,et al.  Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems , 2016, Scientific Reports.

[184]  Nancy L Allbritton,et al.  Benchtop micromolding of polystyrene by soft lithography. , 2011, Lab on a chip.

[185]  C. Fotakis,et al.  Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. , 2008, ACS nano.

[186]  Mostafa Ghannad-Rezaie,et al.  A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. , 2014, Small.

[187]  Seung‐Man Yang,et al.  Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. , 2009, Lab on a chip.

[188]  Yen-Hsun Su,et al.  Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell , 2012, Light: Science & Applications.

[189]  Jason B Shear,et al.  Mask-directed multiphoton lithography. , 2007, Journal of the American Chemical Society.

[190]  Farren J. Isaacs,et al.  Recoded organisms engineered to depend on synthetic amino acids , 2015, Nature.

[191]  Yong‐Lai Zhang,et al.  Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. , 2010, Small.

[192]  J. Nishii,et al.  Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. , 2001, Optics letters.

[193]  Koji Sugioka,et al.  Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. , 2013, Lab on a chip.

[194]  Zhifeng Ren,et al.  Metallic nanostructures for light trapping in energy-harvesting devices , 2014, Light: Science & Applications.

[195]  M. Povinelli,et al.  Light-assisted, templated self-assembly of gold nanoparticle chains. , 2014, Nano letters.

[196]  Jeong-Gun Lee,et al.  SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. , 2012, Lab on a chip.

[197]  G. Pins,et al.  Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation. , 2005, Biomacromolecules.

[198]  D. Lickorish,et al.  Bone marrow genesis after subcutaneous delivery of rat osteogenic cell-seeded biodegradable scaffolds into nude mice. , 2004, Journal of biomedical materials research. Part A.

[199]  Hong‐Bo Sun,et al.  Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system , 2002 .

[200]  T. Baldacchini,et al.  Direct Laser Patterning of Conductive Wires on Three-Dimensional Polymeric Microstructures , 2006 .

[201]  X. Duan,et al.  Gold nanoparticles prepared by glycinate ionic liquid assisted multi-photon photoreduction. , 2012, Physical chemistry chemical physics : PCCP.

[202]  E. A. Sykes,et al.  Tumour-on-a-chip provides an optical window into nanoparticle tissue transport , 2013, Nature Communications.

[203]  David Kleinfeld,et al.  Femtosecond laser-drilled capillary integrated into a microfluidic device , 2005 .

[204]  Aleksandr Ovsianikov,et al.  Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications , 2012, Expert review of medical devices.

[205]  Lei Wang,et al.  Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing , 2015, Science and technology of advanced materials.

[206]  Min Gu,et al.  Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy , 2014, Light: Science & Applications.

[207]  Yong‐Lai Zhang,et al.  Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. , 2010, Lab on a chip.

[208]  Paul C. Blainey,et al.  A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages , 2016, Nature Communications.

[209]  Cindi M Morshead,et al.  Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. , 2011, Nature materials.