Multibranch multifractality and the phase transitions in time series of mean interevent times.

Empirical time series of interevent or waiting times are investigated using a modified Multifractal Detrended Fluctuation Analysis operating on fluctuations of mean detrended dynamics. The core of the extended multifractal analysis is the nonmonotonic behavior of the generalized Hurst exponent h(q)-the fundamental exponent in the study of multifractals. The consequence of this behavior is the nonmonotonic behavior of the coarse Hölder exponent α(q) leading to multibranchedness of the spectrum of dimensions. The Legendre-Fenchel transform is used instead of the routinely used canonical Legendre (single-branched) contact transform. Thermodynamic consequences of the multibranched multifractality are revealed. These are directly expressed in the language of phase transitions between thermally stable, metastable, and unstable phases. These phase transitions are of the first and second orders according to Mandelbrot's modified Ehrenfest classification. The discovery of multibranchedness is tantamount in significance to extending multifractal analysis.

[1]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[2]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[3]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[4]  Joseph W. Haus,et al.  Diffusion in regular and disordered lattices , 1987 .

[5]  Stanley,et al.  Phase transition in the multifractal spectrum of diffusion-limited aggregation. , 1988, Physical review letters.

[6]  T. Bohr,et al.  Fractal «aggregates» in the complex plane , 1988 .

[7]  Aharony,et al.  Breakdown of multifractal behavior in diffusion-limited aggregates. , 1989, Physical review letters.

[8]  Hayakawa,et al.  Exactly self-similar left-sided multifractal measures. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[10]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[11]  Vulpiani,et al.  Random fractals, phase transitions, and negative dimension spectra. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Multifractal dimensions for branched growth , 1996, cond-mat/9607090.

[13]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[14]  G. Jaeger,et al.  The Ehrenfest Classification of Phase Transitions: Introduction and Evolution , 1998 .

[15]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[16]  Apparent multifractality in financial time series , 1999, cond-mat/9906347.

[17]  Luís A. Nunes Amaral,et al.  From 1/f noise to multifractal cascades in heartbeat dynamics. , 2001, Chaos.

[18]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[19]  S.Drozdz,et al.  Multifractality in the stock market: price increments versus waiting times , 2004 .

[20]  P. Jizba,et al.  The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.

[21]  D. Sornette,et al.  Multifractal scaling of thermally activated rupture processes. , 2004, Physical review letters.

[22]  Yoshiharu Yamamoto,et al.  Aging of complex heart rate dynamics , 2006, IEEE Transactions on Biomedical Engineering.

[23]  Enrico Scalas,et al.  The application of continuous-time random walks in finance and economics , 2006 .

[24]  Zbigniew R. Struzik,et al.  Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes , 2006 .

[25]  J. Kwapień,et al.  Wavelet versus detrended fluctuation analysis of multifractal structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Miquel Montero,et al.  Nonindependent continuous-time random walks. , 2007, 0707.4087.

[27]  Enrico Scalas,et al.  Mixtures of compound Poisson processes as models of tick-by-tick financial data , 2007 .

[28]  J. Masoliver,et al.  A Model for Interevent Times with Long Tails and Multifractality in Human Communications: An Application to Financial Trading , 2008, 0805.1353.

[29]  Enrico Scalas,et al.  Fitting the empirical distribution of intertrade durations , 2008 .

[30]  D. Grech,et al.  Multifractal dynamics of stock markets , 2009, 0912.3390.

[31]  Ralf Metzler,et al.  Anomalous diffusion in correlated continuous time random walks , 2009, 0910.1194.

[32]  J. Masoliver,et al.  Higher-order phase transitions on financial markets , 2010 .

[33]  A. Bunde,et al.  On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends , 2011 .

[34]  Jan W. Kantelhardt,et al.  Multifractal moving average analysis and test of multifractal model with tuned correlations , 2011 .

[35]  A. F. Bariviera The Influence of Liquidity on Informational Efficiency: The Case of the Thai Stock Market , 2011 .

[36]  J. Kwapień,et al.  Physical approach to complex systems , 2012 .

[37]  M. Magdziarz,et al.  Correlated continuous-time random walks—scaling limits and Langevin picture , 2012 .

[38]  Dariusz Grech,et al.  Multifractal Background Noise of Monofractal Signals , 2012 .

[39]  Yasmine Hayek Kobeissi Multifractal Financial Markets , 2013 .

[40]  Shaun Lovejoy,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades , 2013 .

[41]  Multiscaling edge effects in an agent-based money emergence model , 2013, 1312.4803.

[42]  J. Kwapień,et al.  Detrended cross-correlation analysis consistently extended to multifractality. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Qiuming Cheng,et al.  Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions , 2014 .

[44]  J. Korbel,et al.  Modeling Financial Time Series: Multifractal Cascades and Rényi Entropy , 2014 .

[45]  Stanisław Drożdż,et al.  Detecting and interpreting distortions in hierarchical organization of complex time series. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  M. Wilinski,et al.  Intra-day variability of the stock market activity versus stationarity of the financial time series , 2014, 1408.6255.

[47]  Robert E. Hampson,et al.  Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences , 2015, Front. Syst. Neurosci..

[48]  Multifractal Characteristics of Intermittent Turbulence in the Urban Canopy Layer , 2015 .

[49]  H. Stanley,et al.  Universality of market superstatistics. , 2015, Physical review. E.

[50]  Peter Herman,et al.  Decomposing Multifractal Crossovers , 2017, Front. Physiol..

[51]  Dariusz Grech,et al.  Quantitative approach to multifractality induced by correlations and broad distribution of data , 2018, Physica A: Statistical Mechanics and its Applications.

[52]  Jie Cao,et al.  Multifractal Detrended Analysis Method and Its Application in Financial Markets , 2018 .

[53]  Ludovico Minati,et al.  Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects , 2018, Chaos.

[54]  D. Sornette,et al.  Multifractal analysis of financial markets: a review. , 2018, Reports on progress in physics. Physical Society.

[55]  T. Gubiec,et al.  Directed continuous-time random walk with memory , 2018, The European Physical Journal B.