Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material

Low cost copper phthalocyanine has been used as hole-transporting material for the construction of organolead halide solid state perovskite solar cells. The cells were assembled and tested under ambient conditions. They achieved a power conversion efficiency of 5.0% using copper phthalocyanine, which appears to have potential to replace the currently used organic hole transporters. The present work has also examined the possibility of upscaling by construction of small cell modules.

[1]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[2]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[3]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[4]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[5]  Hassen Derouiche,et al.  The Effect of Energy Levels of the Electron Acceptor Materials on Organic Photovoltaic Cells , 2011 .

[6]  C. Grätzel,et al.  Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters , 2013 .

[7]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[8]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[9]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[10]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[11]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[12]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[13]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[14]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[15]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[16]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[17]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[18]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[19]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[20]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[21]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[22]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[23]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[24]  Daoben Zhu,et al.  Advances in organic field-effect transistors , 2005 .

[25]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[26]  O. Morton Solar energy: A new day dawning?: Silicon Valley sunrise , 2006, Nature.

[27]  Stavroula Sfaelou,et al.  Composite ZnSe-CdSe Quantum Dot Sensitizers of Solid-State Solar Cells and the Beneficial Effect of Added Na2S , 2014 .

[28]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[29]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[30]  Tien-Lung Chiu,et al.  High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device , 2011, International journal of molecular sciences.

[31]  Olga Malinkiewicz,et al.  Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. , 2014, Journal of the American Chemical Society.

[32]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[33]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[34]  T. Xu,et al.  Nickel-Cathoded Perovskite Solar Cells , 2014 .

[35]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[36]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.