Two types of quasiperiodic partial synchrony in oscillator ensembles.

We analyze quasiperiodic partially synchronous states in an ensemble of Stuart-Landau oscillators with global nonlinear coupling. We reveal two types of such dynamics: in the first case the time-averaged frequencies of oscillators and of the mean field differ, while in the second case they are equal, but the motion of oscillators is additionally modulated. We describe transitions from the synchronous state to both types of quasiperiodic dynamics, and a transition between two different quasiperiodic states. We present an example of a bifurcation diagram, where we show the borderlines for all these transitions, as well as domain of bistability.