Track irregularities stochastic modeling

[1]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005 .

[2]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[3]  Ladislav Frýba,et al.  Dynamics of Railway Bridges , 1996 .

[4]  Werner Schiehlen,et al.  MODELING AND SIMULATION OF RAILWAY BOGIE STRUCTURAL VIBRATIONS , 1998 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  M.M.R. Williams The eigenfunctions of the Karhunen–Loeve integral equation for a spherical system , 2011 .

[7]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[8]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[9]  David Ryckelynck,et al.  A priori reduction method for solving the two-dimensional Burgers' equations , 2011, Appl. Math. Comput..

[10]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[11]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[12]  Y. K. Cheung,et al.  Impact study of cable-stayed railway bridges with random rail irregularities , 2002 .

[13]  N. Wiener The Homogeneous Chaos , 1938 .

[14]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[15]  Roger G. Ghanem,et al.  Polynomial chaos representation of spatio-temporal random fields from experimental measurements , 2009, J. Comput. Phys..

[16]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[17]  Xiang Ma,et al.  Kernel principal component analysis for stochastic input model generation , 2010, J. Comput. Phys..

[18]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[19]  R. H. Fries,et al.  A State-Space Approach to the Synthesis of Random Vertical and Crosslevel Rail Irregularities , 1990 .

[20]  J. Carson Simulation and the Monte Carlo Method , 1982 .

[21]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[22]  Pol D. Spanos,et al.  Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel , 2007 .

[23]  Christian Soize,et al.  Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests , 2007 .

[24]  Bin Wen,et al.  A multiscale approach for model reduction of random microstructures , 2012 .

[25]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[26]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[27]  Michael Hartnett,et al.  Dynamic response of bridges to moving trains: A study on effects of random track irregularities and bridge skewness , 2009 .

[28]  V K Garg,et al.  Dynamics of railway vehicle systems , 1984 .

[29]  Pol D. Spanos,et al.  Galerkin Sampling Method for Stochastic Mechanics Problems , 1994 .

[30]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[31]  Joseph M. Powers,et al.  A Karhunen-Loève least-squares technique for optimization of geometry of a blunt body in supersonic flow , 2004 .

[32]  G. PERRIN,et al.  Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..

[33]  Sq Q. Wu,et al.  Statistical moving load identification including uncertainty , 2012 .

[34]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[35]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[36]  Christian Soize,et al.  Mathematics of random phenomena , 1986 .

[37]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[38]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[39]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[40]  Christian Soize Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions , 2010 .

[41]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[42]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[43]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[44]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[45]  K. Phoon,et al.  Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes , 2007 .