Selfish operons: horizontal transfer may drive the evolution of gene clusters.

A model is presented whereby the formation of gene clusters in bacteria is mediated by transfer of DNA within and among taxa. Bacterial operons are typically composed of genes whose products contribute to a single function. If this function is subject to weak selection or to long periods with no selection, the contributing genes may accumulate mutations and be lost by genetic drift. From a cell's perspective, once several genes are lost, the function can be restored only if all missing genes were acquired simultaneously by lateral transfer. The probability of transfer of multiple genes increases when genes are physically proximate. From a gene's perspective horizontal transfer provides a way to escape evolutionary loss by allowing colonization of organisms lacking the encoded functions. Since organism bearing clustered genes are more likely to act as successful donors, clustered genes would spread among bacterial genomes. The physical proximity of genes may be considered a selfish property of the operon since it affects the probability of successful horizontal transfer but may provide no physiological benefit to the host. This process predicts a mosaic structure of modern genomes in which ancestral chromosomal material is interspersed with novel, horizontally transferred operons providing peripheral metabolic functions.

[1]  J. Roth,et al.  Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions , 1984, Journal of bacteriology.

[2]  J R Roth,et al.  Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. , 1996, Genetics.

[3]  S. Casjens Bacteriophage lambda FII gene protein: role in head assembly. , 1974, Journal of molecular biology.

[4]  M. Demerec,et al.  Analysis of linkage relationships in Salmonella by transduction techniques. , 1956, Brookhaven symposia in biology.

[5]  P. Hartman,et al.  Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. , 1960, Journal of general microbiology.

[6]  G. Beadle,et al.  Genetic Control of Biochemical Reactions in Neurospora , 1941 .

[7]  A. Subramanian Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome. , 1975, Journal of molecular biology.

[8]  C. Roessner,et al.  The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase , 1993, FEBS letters.

[9]  K. Rudd,et al.  Genetic map of Salmonella typhimurium, edition VIII. , 1995, Microbiological reviews.

[10]  G. Kowalchuk,et al.  Unusual G + C content and codon usage in catIJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. , 1994, Gene.

[11]  B. Bachmann,et al.  Linkage Map of Escherichia coli K-12, Edition 8 , 1991, Microbiological reviews.

[12]  E. Margoliash,et al.  Comparative aspects of primary structures of proteins. , 1968, Annual review of biochemistry.

[13]  P. Wrede,et al.  Genetic transfer of the pigment bacteriorhodopsin into the eukaryote Schizosaccharomyces pombe , 1989, FEBS letters.

[14]  J. L. Stokes,et al.  GROWTH-FACTOR-DEPENDENT STRAINS OF SALMONELLAE , 1958, Journal of bacteriology.

[15]  M. B. Mitchell ABERRANT RECOMBINATION OF PYRIDOXINE MUTANTS OF Neurospora. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Reeves,et al.  Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. , 1993, Trends in genetics : TIG.

[17]  A. Rambach New plate medium for facilitated differentiation of Salmonella spp. from Proteus spp. and other enteric bacteria , 1990, Applied and environmental microbiology.

[18]  D. D. Perkins,et al.  Map construction in Neurospora crassa. , 1954, Advances in genetics.

[19]  S. Liebhaber,et al.  The human growth hormone gene is regulated by a multicomponent locus control region , 1995, Molecular and cellular biology.

[20]  B. Levin Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. , 1981, Genetics.

[21]  M Achtman,et al.  Six widespread bacterial clones among Escherichia coli K1 isolates , 1983, Infection and immunity.

[22]  M. N. Margolies,et al.  Relative translation frequencies of the cistrons of the histidine operon. , 1970, Journal of molecular biology.

[23]  G. Pontecorvo New fields in the biochemical genetics of micro-organisms. , 1949, The Biochemical journal.

[24]  E. Lederberg Allelic Relationships and Reverse Mutation in Escherichia Coli. , 1952, Genetics.

[25]  A. Kepes Sequential transcription and translation in the lactose operon of Escherichia coli. , 1967, Biochimica et biophysica acta.

[26]  D. Botstein A THEORY OF MODULAR EVOLUTION FOR BACTERIOPHAGES * , 1980, Annals of the New York Academy of Sciences.

[27]  N. Packer,et al.  Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster , 1994, Journal of bacteriology.

[28]  Jacques Monod,et al.  On the Regulation of Gene Activity , 1961 .

[29]  T. Bobik,et al.  A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation , 1992, Journal of bacteriology.

[30]  Roger W. Hendrix,et al.  Control Mechanisms in dsDNA Bacteriophage Assembly , 1988 .

[31]  E. Margoliash,et al.  EVOLUTION OF CYTOCHROME C. , 1964, Federation proceedings.

[32]  A. Mourant Transduction and Skeletal Evolution , 1971, Nature.

[33]  E. Lederberg Genetic and Functional Aspects of Galactose Metabolism in Escherichia coli K-12 , 1960 .

[34]  Walter F. Bodmer,et al.  Linkage and Recombination in Evolution , 1962 .

[35]  H. K. Mitchell,et al.  The Selective Advantage of an Adenineless Double Mutant Over One of the Single Mutants Involved. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Matsui,et al.  Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon. , 1986, Nucleic acids research.

[37]  S. Howarth Suppressor Mutations in Some Cystine-Requiring Mutants of Salmonella Typhimurium. , 1958, Genetics.

[38]  N. Horowitz,et al.  Some recent studies bearing on the one geneone enzyme hypothesis. , 1951, Cold Spring Harbor symposia on quantitative biology.

[39]  P. Dimroth,et al.  Sequence of the sodium ion pump oxaloacetate decarboxylase from Salmonella typhimurium. , 1992, The Journal of biological chemistry.

[40]  L. C. Dunn,et al.  A case of neighboring loci with similar effects. , 1945, Genetics.

[41]  Harvard Medical School,et al.  Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium , 1993, Journal of bacteriology.

[42]  B. Ames,et al.  BIOCHEMICAL ASPECTS OF GENETICS: THE OPERON. , 1964, Annual review of biochemistry.

[43]  M. Syvanen Horizontal gene transfer: evidence and possible consequences. , 1994, Annual review of genetics.

[44]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[45]  L. Hurst,et al.  Selfish genes move sideways , 1992, Nature.

[46]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[47]  J. V. Bannister,et al.  The presence of a copper/zinc superoxide dismutase in the bacterium Photobacterium leiognathi: a likely case of gene transfer from eukaryotes to prokaryotes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[48]  H. Ochman,et al.  Evidence for clonal population structure in Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Michael G. Rossmann,et al.  Chemical and biological evolution of a nucleotide-binding protein , 1974, Nature.

[50]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[51]  J. Roth,et al.  Evidence that the CysG protein catalyzes the first reaction specific to B12 synthesis in Salmonella typhimurium, insertion of cobalt , 1996, Journal of bacteriology.

[52]  Horizontal Gene Flow: Evidence and Possible Consequences , 1994 .

[53]  E. Lewis Pseudoallelism and gene evolution. , 1951, Cold Spring Harbor symposia on quantitative biology.

[54]  M. G. Kidwell Lateral transfer in natural populations of eukaryotes. , 1993, Annual review of genetics.

[55]  J. Roper Search for Linkage between Genes determining a Vitamin Requirement , 1950, Nature.

[56]  J. Klena,et al.  The rfaS gene, which is involved in production of a rough form of lipopolysaccharide core in Escherichia coli K-12, is not present in the rfa cluster of Salmonella typhimurium LT2 , 1993, Journal of Bacteriology.

[57]  E. Englesberg,et al.  Dual effects of structural genes in Escherichia coli. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. A. Smith Some Aspects of the Genetics of Methionineless Mutants of Salmonella typhimurium , 1961 .

[59]  C. Yanofsky,et al.  Translational coupling during expression of the tryptophan operon of Escherichia coli. , 1980, Genetics.

[60]  K. Sanderson,et al.  THE LINKAGE MAP OF SALMONELLA TYPHIMURIUM. , 1965, Genetics.

[61]  N. Murray,et al.  The evolution of gene clusters and genetic circularity in microorganisms. , 1966, Genetics.

[62]  T. P. Flores,et al.  Identification and classification of protein fold families. , 1993, Protein engineering.

[63]  R Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. , 1990, Genetics.

[64]  R. E. Webster,et al.  The in vitro translation of a terminating signal by a single Escherichia coli ribosome. The fate of the subunits. , 1975, The Journal of biological chemistry.

[65]  D. Moras,et al.  D-glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[66]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Reeves,et al.  Presence of different O antigen forms in three isolates of one clone of Escherichia coli. , 1994, Genetics.

[68]  D. Dykhuizen,et al.  Detecting selective sweeps in naturally occurring Escherichia coli. , 1994, Genetics.

[69]  R. Goldschmidt Chromosomes and genes. , 1951, Cold Spring Harbor symposia on quantitative biology.

[70]  S. G. Stephens Possible Significance of Duplication in Evolution , 1951 .

[71]  T. Whittam,et al.  Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Demerec,et al.  Complex Loci in Microorganisms , 1959 .

[73]  J. Roth,et al.  The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli , 1995, Journal of bacteriology.

[74]  L. Gorini,et al.  Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. , 1961, Cold Spring Harbor symposia on quantitative biology.

[75]  I. Crawford,et al.  Evolution of a biosynthetic pathway: the tryptophan paradigm. , 1989, Annual review of microbiology.

[76]  G N Cohen,et al.  Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[77]  P. Hartman Linked loci in the control of consecutive steps in the primary pathway of histidine synthesis in Salmonella typhimurium , 1956 .

[78]  M. Bubunenko,et al.  A novel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rplKAJL) in cyanobacterium Synechocystis PCC 6803. , 1993, The Journal of biological chemistry.

[79]  C. Green,et al.  Staphylococcus aureus has clustered tRNA genes , 1993, Journal of bacteriology.

[80]  H. Ochman,et al.  Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. , 1993, The EMBO journal.

[81]  T. Whittam,et al.  Geographic components of linkage disequilibrium in natural populations of Escherichia coli. , 1983, Molecular biology and evolution.

[82]  B. Bachmann,et al.  Linkage map of Escherichia coli K-12, edition 8 , 1990, Microbiological reviews.

[83]  C. Yanofsky,et al.  Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in Escherichia coli. , 1959, Virology.

[84]  D. Ebbole,et al.  Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. , 1987, The Journal of biological chemistry.

[85]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Pasquale Petrilli Classification of protein sequences by their dipeptide composition , 1993, Comput. Appl. Biosci..

[87]  B. Holloway,et al.  Genome Organization in Pseudomonas , 1986 .

[88]  B. Levin,et al.  Genetic diversity and structure in Escherichia coli populations. , 1980, Science.

[89]  M. Demerec,et al.  EVIDENCE OF COMPLEX LOCI IN SALMONELLA. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[90]  F. Blattner,et al.  DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. , 1993, Genomics.

[91]  M. Demerec,et al.  Proline Mutants of Salmonella Typhimurium. , 1960, Genetics.

[92]  C. Sander,et al.  The FSSP database of structurally aligned protein fold families. , 1994, Nucleic acids research.

[93]  M. Riley,et al.  Location and analysis of nucleotide sequences at one end of a putative lac transposon in the Escherichia coli chromosome , 1984, Journal of bacteriology.

[94]  T. Komai Semi-Allelic Genes , 1950, The American Naturalist.

[95]  S. Broder,et al.  From the National Institutes of Health. , 1992, JAMA.

[96]  M. Arthur,et al.  Evidence for natural gene transfer from gram-positive cocci to Escherichia coli , 1988, Journal of bacteriology.

[97]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[98]  J. Beckwith,et al.  Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. , 1962, Journal of molecular biology.

[99]  T. Maniatis,et al.  The molecular genetics of human hemoglobins. , 1980, Annual review of genetics.

[100]  P. Reeves,et al.  Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains , 1994, Journal of bacteriology.