Unconditionally superconvergent error estimates of a linearized Galerkin finite element method for the nonlinear thermistor problem

[1]  Y. Liu,et al.  Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations , 2022, Advances in Computational Mathematics.

[2]  Linzhang Lu,et al.  New superconvergence estimates of FEM for time-dependent Joule heating problem , 2022, Comput. Math. Appl..

[3]  Weiwei Sun,et al.  New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media , 2020, Math. Comput..

[4]  Kai Wang,et al.  Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media , 2020, Journal of Scientific Computing.

[5]  Dongyang Shi,et al.  Superconvergence analysis of nonconforming FEM for nonlinear time-dependent thermistor problem , 2019, Appl. Math. Comput..

[6]  Ling Jian,et al.  Laplace error penalty-based M-type model detection for a class of high dimensional semiparametric models , 2019, J. Comput. Appl. Math..

[7]  Jilu Wang,et al.  Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system , 2018, Numerische Mathematik.

[8]  D. Shi,et al.  Superconvergent estimates of conforming finite element method for nonlinear time‐dependent Joule heating equations , 2018 .

[9]  Dongyang Shi,et al.  Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation , 2017, Appl. Math. Comput..

[10]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[11]  Weiwei Sun,et al.  Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D , 2017, J. Comput. Appl. Math..

[12]  Weiwei Sun,et al.  Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon , 2017, Numerische Mathematik.

[13]  Dongfang Li,et al.  Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System , 2017, J. Sci. Comput..

[14]  Dongyang Shi,et al.  Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation , 2017, Appl. Math. Comput..

[15]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[16]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[17]  Rong An,et al.  Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..

[18]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[19]  Peter Kuster Finite Element Methods And Their Applications , 2016 .

[20]  Dongyang Shi,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..

[21]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[22]  Huadong Gao,et al.  Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation , 2014, SIAM J. Numer. Anal..

[23]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[24]  Weiwei Sun,et al.  Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..

[25]  Huadong Gao Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2014, J. Sci. Comput..

[26]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[27]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[28]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[29]  Xiangsheng Xu,et al.  Existence for the thermoelastic thermistor problem , 2006 .

[30]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[31]  Stig Larsson,et al.  Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .

[32]  Walter Allegretto,et al.  Existence and long time behaviour of solutions to obstacle thermistor equations , 2002 .

[33]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[34]  Zhao Weidong,et al.  Finite difference method and its convergent error analyses for thermistor problem , 1999 .

[35]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[36]  D. R. Westbrook,et al.  Numerical solutions of the thermistor equations , 1997 .

[37]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .

[38]  Guangwei Yuan,et al.  Existence and uniqueness of the C a solution for the thermistor problem with mixed boundary value , 1994 .

[39]  Guangwei Yuan,et al.  Regularity of solutions of the thermistor problem , 1994 .

[40]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[41]  Giovanni Cimatti,et al.  Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .

[42]  W. Allegretto,et al.  Existence of solutions for the time-dependent thermistor equations , 1992 .

[43]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .