A statistical learning theory approach for uncertain linear and bilinear matrix inequalities
暂无分享,去创建一个
Qing-Guo Wang | Roberto Tempo | Fabrizio Dabbene | Mohammadreza Chamanbaz | Venkatakrishnan Venkataramanan | R. Tempo | F. Dabbene | V. Venkataramanan | Qing‐Guo Wang | M. Chamanbaz
[1] Giuseppe Carlo Calafiore,et al. A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs , 2007, Autom..
[2] R. Braatz,et al. A tutorial on linear and bilinear matrix inequalities , 2000 .
[3] Maryamsadat Tahavori,et al. IEEE Multi-Conference on Systems and Control , 2013 .
[4] Roberto Tempo,et al. Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..
[5] Giuseppe Carlo Calafiore,et al. Research on probabilistic methods for control system design , 2011, Autom..
[6] Mathukumalli Vidyasagar,et al. Randomized algorithms for robust controller synthesis using statistical learning theory , 2001, Autom..
[7] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[8] Mathukumalli Vidyasagar,et al. Learning and Generalization: With Applications to Neural Networks , 2002 .
[9] R. Tempo,et al. Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .
[10] Mario Sznaier,et al. Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..
[11] Michel Verhaegen,et al. Robust output-feedback controller design via local BMI optimization , 2004, Autom..
[12] Michel Verhaegen,et al. An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..
[13] Laurent El Ghaoui,et al. Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..
[14] Giuseppe Carlo Calafiore,et al. Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..
[15] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[16] Eduardo F. Camacho,et al. Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems , 2009, IEEE Transactions on Automatic Control.
[17] Yasuaki Oishi,et al. Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities , 2007, Autom..
[18] Giuseppe Carlo Calafiore,et al. The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.
[19] Marek Karpinski,et al. Polynomial Bounds for VC Dimension of Sigmoidal and General Pfaffian Neural Networks , 1997, J. Comput. Syst. Sci..
[20] Vincent D. Blondel,et al. Probabilistic solutions to some NP-hard matrix problems , 2001, Autom..
[21] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[22] Marco C. Campi,et al. The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..
[23] F. Leibfritz. COMPleib: COnstrained Matrix–optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems , 2006 .
[24] Dmitry Panchenko,et al. Improved sample complexity estimates for statistical learning control of uncertain systems , 2000, IEEE Trans. Autom. Control..
[25] Roberto Tempo,et al. Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms , 2013, Autom..
[26] Jun'ichi Takeuchi. Improved Sample Complexity Bounds for Parameter Estimation , 1995, IEICE Trans. Inf. Syst..
[27] Qing-Guo Wang,et al. Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty , 2013, IEEE Transactions on Automatic Control.
[28] Michael G. Safonov,et al. Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..
[29] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[30] Qing-Guo Wang,et al. On the sample complexity of uncertain linear and bilinear matrix inequalities , 2013, 52nd IEEE Conference on Decision and Control.
[31] Qing-Guo Wang,et al. Sequential randomized algorithms for sampled convex optimization , 2013, 2013 IEEE Conference on Computer Aided Control System Design (CACSD).
[32] G. Calafiore,et al. Reduced Vertex Set Result for Interval Semidefinite Optimization Problems , 2008 .
[33] Giuseppe Carlo Calafiore,et al. RACT: Randomized Algorithms Control Toolbox for MATLAB , 2008 .
[34] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[35] Eduardo F. Camacho,et al. A new vertex result for robustness problems with interval matrix uncertainty , 2007, 2007 European Control Conference (ECC).
[36] S. Uryasev. Probabilistic constrained optimization : methodology and applications , 2000 .
[37] Michel Verhaegen,et al. Controller reconfiguration for non-linear systems , 2000 .
[38] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[39] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[40] Giuseppe Carlo Calafiore,et al. Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..
[41] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[42] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[43] Roberto Tempo,et al. The Sample Complexity of Randomized Methods for Analysis and Design of Uncertain Systems , 2013, ArXiv.
[44] Y. Fujisaki,et al. Probabilistic robust controller design: probable near minimax value and randomized algorithms , 2003 .
[45] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[46] Michael Stingl,et al. PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..
[47] Roberto Tempo,et al. Randomized control design through probabilistic validation , 2012, 2012 American Control Conference (ACC).