A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene.

The hares and rabbits belonging to the family Leporidae have a nearly worldwide distribution and approximately 72% of the genera have geographically restricted distributions. Despite several attempts using morphological, cytogenetic, and mitochondrial DNA evidence, a robust phylogeny for the Leporidae remains elusive. To provide phylogenetic resolution within this group, a molecular supermatrix was constructed for 27 taxa representing all 11 leporid genera. Five nuclear (SPTBN1, PRKCI, THY, TG, and MGF) and two mitochondrial (cytochrome b and 12S rRNA) gene fragments were analyzed singly and in combination using parsimony, maximum likelihood, and Bayesian inference. The analysis of each gene fragment separately as well as the combined mtDNA data almost invariably failed to provide strong statistical support for intergeneric relationships. In contrast, the combined nuclear DNA topology based on 3601 characters greatly increased phylogenetic resolution among leporid genera, as was evidenced by the number of topologies in the 95% confidence interval and the number of significantly supported nodes. The final molecular supermatrix contained 5483 genetic characters and analysis thereof consistently recovered the same topology across a range of six arbitrarily chosen model specifications. Twelve unique insertion-deletions were scored and all could be mapped to the tree to provide additional support without introducing any homoplasy. Dispersal-vicariance analyses suggest that the most parsimonious solution explaining the current geographic distribution of the group involves an Asian or North American origin for the Leporids followed by at least nine dispersals and five vicariance events. Of these dispersals, at least three intercontinental exchanges occurred between North America and Asia via the Bering Strait and an additional three independent dispersals into Africa could be identified. A relaxed Bayesian molecular clock applied to the seven loci used in this study indicated that most of the intercontinental exchanges occurred between 14 and 9 million years ago and this period is broadly coincidental with the onset of major Antarctic expansions causing land bridges to be exposed.

[1]  K. Halanych,et al.  Phylogenetic relationships of cottontails (Sylvilagus, Lagomorpha): congruence of 12S rDNA and cytogenetic data. , 1997, Molecular phylogenetics and evolution.

[2]  Jonathan P. Bollback,et al.  Bayesian model adequacy and choice in phylogenetics. , 2002, Molecular biology and evolution.

[3]  S. Pääbo,et al.  Polymerase chain reaction reveals cloning artefacts , 1988, Nature.

[4]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[5]  A. Meyer,et al.  Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Gissi,et al.  The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus. , 1998, Genomics.

[7]  D. Bell,et al.  Striped rabbits in Southeast Asia , 1999, Nature.

[8]  R. D. Fisher,et al.  Identification and restriction of the type locality of the Manzano Mountains cottontail , Sylvilagus cognatus Nelson , 1907 ( Mammalia : Lagomorpha : Leporidae ) , 2006 .

[9]  C. Simon,et al.  Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. , 2001, Systematic biology.

[10]  M. Springer,et al.  Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. , 1995, Molecular biology and evolution.

[11]  R DeSalle,et al.  Multiple sources of character information and the phylogeny of Hawaiian drosophilids. , 1997, Systematic biology.

[12]  D. Hillis Nucleic acids IV : Sequencing and cloning , 1996 .

[13]  M. Schwarz,et al.  Molecular phylogenetics of allodapine bees, with implications for the evolution of sociality and progressive rearing. , 2003, Systematic biology.

[14]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[15]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[16]  M. Nei,et al.  Fifty-million-year-old polymorphism at an immunoglobulin variable region gene locus in the rabbit evolutionary lineage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[18]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[19]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[20]  Derrick J. Zwickl,et al.  Increased taxon sampling is advantageous for phylogenetic inference. , 2002, Systematic biology.

[21]  Effrey,et al.  Divergence Time and Evolutionary Rate Estimation with Multilocus Data , 2002 .

[22]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[23]  S. O’Brien,et al.  Molecular phylogenetics and the origins of placental mammals , 2001, Nature.

[24]  A. Vogler,et al.  Exploring data interaction and nucleotide alignment in a multiple gene analysis of Ips (Coleoptera: Scolytinae). , 2001, Systematic biology.

[25]  A. Wyss,et al.  Primitive fossil rodent from Inner Mongolia and its implications for mammalian phylogeny , 1994, Nature.

[26]  C. Pond,et al.  Walker's Mammals of the World, 4th Edition, Ronald M. Nowak, John L. Paradiso. The Johns Hopkins University Press, Baltimore, Maryland (1983), 1xi, +1-568 (Vol. I), xxv+569-1362 (Vol. II). Price $65.00 , 1984 .

[27]  T. J. Robinson,et al.  Systematics and biogeography of the New England cottontail, Sylvilagus transitionalis (Bangs, 1895), with the description of a new species from the Appalachian Mountains , 1992 .

[28]  Matthew H. Nitecki,et al.  Some Other Books of Interest. (Book Reviews: Extinctions; Orders and Families of Recent Mammals of the World) , 1985 .

[29]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[30]  J. A. Chapman,et al.  Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audubonii, S. idahoensis, S. nuttallii, and S. palustris. , 1984, Cytogenetics and cell genetics.

[31]  C. Matthee,et al.  Mining the mammalian genome for artiodactyl systematics. , 2001, Systematic biology.

[32]  Alexei Tikhonov,et al.  Annamite striped rabbit Nesolagus timminsi in Vietnam , 2001 .

[33]  Hitoshi Suzuki,et al.  Molecular phylogeny of Japanese Leporidae, the Amami rabbit Pentalagus furnessi, the Japanese hare Lepus brachyurus, and the mountain hare Lepus timidus, inferred from mitochondrial DNA sequences. , 2002, Genes & genetic systems.

[34]  R. DeSalle,et al.  A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. , 1997, Molecular phylogenetics and evolution.

[35]  Asami,et al.  Assessing the Cretaceous Superordinal Divergence Times within Birds and Placental Mammals by Using Whole Mitochondrial Protein Sequences and an Extended Statistical Framework , 2001 .

[36]  M. Dawson Later Tertiary Leporidae of North America , 1958 .

[37]  C. W. Hibbard The Origin of the P3 Pattern of Sylvilagus, Caprolagus, Oryctolagus and Lepus , 1963 .

[38]  onrad,et al.  Resolution of a Supertree / Supermatrix Paradox , 2002 .

[39]  Marc Robinson-Rechavi,et al.  RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree , 2000, Bioinform..

[40]  V. Flyger,et al.  Proceedings of the World Lagomorph Conference , 1984 .

[41]  Juan J. Morrone,et al.  HISTORICAL BIOGEOGRAPHY: Introduction to Methods , 1995 .

[42]  S. Barker,et al.  A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. , 2001, Molecular phylogenetics and evolution.

[43]  Jon A. White North American Leporinae (Mammalia: Lagomorpha) from late Miocene (Clarendonian) to latest Pliocene (Blancan) , 1991 .

[44]  Lagomorphs , 2022, Zoo and Wild Animal Dentistry.

[45]  C. Matthee,et al.  Mitochondrial DNA differentiation among geographical populations of Pronolagus rupestris, Smith's red rock rabbit (Mammalia: Lagomorpha) , 1996, Heredity.

[46]  A. Austin,et al.  Increased congruence does not necessarily indicate increased phylogenetic accuracy--the behavior of the incongruence length difference test in mixed-model analyses. , 2002, Systematic biology.

[47]  Peter Arensburger,et al.  Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. , 2002, Systematic biology.

[48]  M. Voorhies,et al.  A new Pronotolagus (Lagomorpha: Leporidae) and other leporids from the Valentine Railway quarries (Barstovian, Nebraska), and the archaeolagine-leporine transition , 1997 .

[49]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[50]  S. O’Brien,et al.  Placental mammal diversification and the Cretaceous–Tertiary boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. J. Robinson,et al.  Cytochrome b phylogeny of the family bovidae: resolution within the alcelaphini, antilopini, neotragini, and tragelaphini. , 1999, Molecular phylogenetics and evolution.

[52]  D. Swofford,et al.  Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated? , 2001, Systematic biology.

[53]  C. Matthee,et al.  Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. , 2001, Molecular biology and evolution.

[54]  Ziheng Yang,et al.  Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene Loci and calibration points, with application to a radiation of cute-looking mouse lemur species. , 2003, Systematic biology.

[55]  D M Irwin,et al.  Evolution of the cytochrome b gene of mammals. , 1991, Journal of molecular evolution.

[56]  Wen-Hsiung Li,et al.  Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences. , 2000, Molecular phylogenetics and evolution.

[57]  P J Waddell,et al.  Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. , 1999, Systematic biology.

[58]  J. Huelsenbeck Testing a covariotide model of DNA substitution. , 2002, Molecular biology and evolution.

[59]  T. Robinson,et al.  Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) , 2002, Cytogenetic and Genome Research.

[60]  R. Nowak,et al.  Walker's mammals of the world , 1968 .

[61]  J. Farris,et al.  Homoplasy Increases Phylogenetic Structure , 1999 .

[62]  M. Allard,et al.  Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African mole-rats (Rodentia: Bathyergidae). , 1992, Molecular biology and evolution.

[63]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[64]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[65]  C. Kelsey,et al.  Different models, different trees: the geographic origin of PTLV-I. , 1999, Molecular phylogenetics and evolution.

[66]  B. Glass British Museum (Natural History) Checklist of Palearctic and Indian Mammals 1758 to 1946.J. R. Ellerman , T. C. S. Morrison-Scott , 1953 .

[67]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[68]  M. Milinkovitch,et al.  Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. , 1999, Systematic biology.

[69]  Kenneth M. Halanych,et al.  Multiple Substitutions Affect the Phylogenetic Utility of Cytochrome b and 12S rDNA Data: Examining a Rapid Radiation in Leporid (Lagomorpha) Evolution , 1999, Journal of Molecular Evolution.

[70]  D. Klein,et al.  Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, lagomorpha) and the effects of saturation in outgroup taxa. , 1999, Molecular phylogenetics and evolution.

[71]  P. Lio’,et al.  Molecular phylogenetics: state-of-the-art methods for looking into the past. , 2001, Trends in genetics : TIG.

[72]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[73]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[74]  Carol J. Bult,et al.  Constructing a Significance Test for Incongruence , 1995 .