Eine Prävalenzrelation basierend auf additiven Bewertungen unter unvollständiger Information

Die Losung von Entscheidungsproblemen bei mehrfacher Zielsetzung kann fur den Anwender wesentlich vereinfacht werden, wenn die erforderlichen Informationen nicht exakt zur Verfugung gestellt werden mussen, sondern unscharf spezifiziert werden konnen. Der Beitrag gibt zunachst einen Uberblick uber Ansatze zur Losung von Entscheidungsproblemen bei unvollstandiger Information und geht dann auf eine spezifische Form unvollstandiger Information, namlich Intervalldaten, naher ein. Es wird gezeigt, dass in diesem Fall mit geringem Rechenaufwand uberpruft werden kann, ob eine Alternative einer anderen Alternative uberlegen ist, und dass die so ermittelte Relation zwischen den Alternativen einige wunschenswerte Eigenschaften aufweist.

[1]  Rakesh K. Sarin,et al.  ELICITATION OF SUBJECTIVE PROBABILITIES IN THE CONTEXT OF DECISION-MAKING * , 1978 .

[2]  P. Hansen,et al.  Essays and surveys on multiple criteria decision making : proceedings of the Fifth International Conference on Multiple Criteria Decision Making, Mons, Belgium, August 9-13, 1982 , 1983 .

[3]  Yves Crama,et al.  An introduction to the ELECTRE research programme , 1983 .

[4]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[5]  Z. Kmietowicz,et al.  Decision theory, linear partial information and statistical dominance , 1984 .

[6]  Rakesh K. Sarin,et al.  Ranking with Partial Information: A Method and an Application , 1985, Oper. Res..

[7]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..

[8]  Martin Weber Decision Making with Incomplete Information , 1987 .

[9]  Rudolf Vetschera An interactive outranking system for multiattribute decision making , 1988, Comput. Oper. Res..

[10]  Charles P. Schmidt,et al.  Sensitivity Analysis of Additive Multiattribute Value Models , 1988, Oper. Res..

[11]  Ami Arbel,et al.  Approximate articulation of preference and priority derivation , 1989 .

[12]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[13]  Simon French,et al.  A FRAMEWORK FOR SENSITIVITY ANALYSIS IN DISCRETE MULTI OBJECTIVE DECISION MAKING , 1991 .

[14]  Pekka Korhonen,et al.  Multiple criteria decision support - A review , 1992 .

[15]  Carlos Henggeler Antunes,et al.  Sensitivity analysis in MCDM using the weight space , 1992, Oper. Res. Lett..

[16]  Alan Pearman,et al.  Establishing Dominance in Multiattribute Decision Making Using an Ordered Metric Method , 1993 .

[17]  Rudolf Vetschera,et al.  Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung , 1994 .

[18]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[19]  Shinhong Kim,et al.  An Extended Model for Establishing Dominance in Multiattribute Decisionmaking , 1996 .

[20]  F. Choobineh,et al.  Stochastic dominance tests for ranking alternatives under ambiguity , 1996 .

[21]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[22]  N. Bryson,et al.  An action learning evaluation procedure for multiple criteria decision making problems , 1997 .

[23]  Wan Chul Yoon,et al.  Establishing strict dominance between alternatives with special type of incomplete information , 1997 .

[24]  Antreas D. Athanassopoulos,et al.  Dominance and potential optimality in multiple criteria decision analysis with imprecise information , 1997 .

[25]  Kyung S. Park,et al.  Tools for interactive multiattribute decisionmaking with incompletely identified information , 1997 .

[26]  A. M. Mármol,et al.  The use of partial information on weights in multicriteria decision problems , 1998 .

[27]  Zhi-Ping Fan,et al.  A parameter analysis method for the weight‐set to satisfy preference orders of alternatives in additive multi‐criteria value models , 2000 .

[28]  Kwangtae Park,et al.  Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information , 2001, Eur. J. Oper. Res..

[29]  Soung Hie Kim,et al.  Establishing dominance and potential optimality in multi-criteria analysis with imprecise weight and value , 2001, Comput. Oper. Res..

[30]  Soung Hie Kim,et al.  Dominance, potential optimality, imprecise information, and hierarchical structure in multi-criteria analysis , 2002, Comput. Oper. Res..

[31]  Justo Puerto,et al.  Sequential incorporation of imprecise information in multiple criteria decision processes , 2002, Eur. J. Oper. Res..