Numerical Integration in Multiple Dimensions with Designed Quadrature

We present a systematic computational framework for generating positive quadrature rules in multiple dimensions on general geometries. A direct moment-matching formulation that enforces exact integration on polynomial subspaces yields nonlinear conditions and geometric constraints on nodes and weights. We use penalty methods to address the geometric constraints, and subsequently solve a quadratic minimization problem via the Gauss-Newton method. Our analysis provides guidance on requisite sizes of quadrature rules for a given polynomial subspace, and furnishes useful user-end stability bounds on error in the quadrature rule in the case when the polynomial moment conditions are violated by a small amount due to, e.g., finite precision limitations or stagnation of the optimization procedure. We present several numerical examples investigating optimal low-degree quadrature rules, Lebesgue constants, and 100-dimensional quadrature. Our capstone examples compare our quadrature approach to popular alternatives, such as sparse grids and quasi-Monte Carlo methods, for problems in linear elasticity and topology optimization.

[1]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[4]  D. Lubinsky A Survey of Weighted Polynomial Approximation with Exponential Weights , 2007 .

[5]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[6]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[7]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[8]  Daniel A. Tortorelli,et al.  Topology optimization under uncertainty via non-intrusive polynomial chaos expansion , 2017 .

[9]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[10]  Phillipp Kaestner,et al.  Linear And Nonlinear Programming , 2016 .

[11]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[12]  D. Xiu Numerical integration formulas of degree two , 2008 .

[13]  A. H. Stroud,et al.  Some fifth degree integration formulas for symmetric regions II , 1967 .

[14]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[15]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[16]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[19]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[20]  Hans-Joachim Bungartz,et al.  Multivariate Quadrature on Adaptive Sparse Grids , 2003, Computing.

[21]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[22]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[23]  Art B. Owen,et al.  Quasi-Monte Carlo Sampling by , 2003, SIGGRAPH 2003.

[24]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[25]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.

[26]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[27]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[28]  Nitin Agarwal,et al.  A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..

[29]  Stephen P. Boyd,et al.  Extensions of Gauss Quadrature Via Linear Programming , 2014, Found. Comput. Math..

[30]  Marco Vianello,et al.  Bivariate polynomial interpolation on the square at new nodal sets , 2005, Appl. Math. Comput..

[31]  Mark A. Taylor,et al.  A Cardinal Function Algorithm for Computing Multivariate Quadrature Points , 2007, SIAM J. Numer. Anal..

[32]  J. Hesthaven,et al.  Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty , 2011 .

[33]  A. Stroud Remarks on the disposition of points in numerical integration formulas. , 1957 .

[34]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[35]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[36]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[37]  Akil Narayan,et al.  Generation and application of multivariate polynomial quadrature rules , 2017, Computer Methods in Applied Mechanics and Engineering.

[38]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[39]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[40]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[41]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[42]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[43]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[44]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[45]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[46]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[47]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[48]  Yuan Xu,et al.  A characterization of positive quadrature formulae , 1994 .

[49]  Michael P. Friedlander,et al.  Sparse Optimization with Least-Squares Constraints , 2011, SIAM J. Optim..

[50]  Laurent Sorber,et al.  Approximating optimal point configurations for multivariate polynomial interpolation , 2013 .

[51]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .