Genus and the geometry of the cut graph

We study the quantitative geometry of graphs in terms of their genus, using the structure of certain "cut graphs," i.e. subgraphs whose removal leaves a planar graph. In particular, we give optimal bounds for random partitioning schemes, as well as various types of embeddings. Using these geometric primitives, we present exponentially improved dependence on genus for a number of problems like approximate max-flow/min-cut theorems, approximations for uniform and nonuniform Sparsest Cut, treewidth approximation, Laplacian eigenvalue bounds, and Lipschitz extension theorems and related metric labeling problems. We list here a sample of these improvements. All the following statements refer to graphs of genus <i>g</i>, unless otherwise noted. • We show that such graphs admit an <i>O</i>(log <i>g</i>)-approximate multi-commodity max-flow/min-cut theorem for the case of uniform demands. This bound is optimal, and improves over the previous bound of <i>O</i>(<i>g</i>) [KPR93, FT03]. For general demands, we show that the worst possible gap is <i>O</i>(log <i>g</i> + <i>C</i><sub><i>P</i></sub>), where <i>C</i><sub><i>P</i></sub> is the gap for planar graphs. This dependence is optimal, and already yields a bound of <i>O</i>(log <i>g</i> + √log <i>n</i>), improving over the previous bound of <i>O</i>(√<i>g</i> log <i>n</i>) [KLMN04]. • We give an <i>O</i>(√log <i>g</i>)-approximation for the uniform Sparsest Cut, balanced vertex separator, and treewidth problems, improving over the previous bound of <i>O</i>(<i>g</i>) [FHL05]. • If a graph <i>G</i> has genus <i>g</i> and maximum degree <i>D</i>, we show that the <i>k</i>th Laplacian eigenvalue of <i>G</i> is (log <i>g</i>)<sup>2</sup> · <i>O</i>(<i>kgD/n</i>), improving over the previous bound of <i>g</i><sup>2</sup>·<i>O</i>(<i>kgD/n</i>) [KLPT09]. There is a lower bound of Ω(<i>kgD/n</i>), making this result almost tight. • We show that if (<i>X, d</i>) is the shortest-path metric on a graph of genus <i>g</i> and <i>S</i> ⊆ <i>X</i>, then every <i>L</i>-Lipschitz map <i>f</i>: <i>S</i> → <i>Z</i> into a Banach space <i>Z</i> admits an <i>O</i>(<i>L</i> log <i>g</i>)-Lipschitz extension <i>f</i>: <i>X</i> → <i>Z</i>. This improves over the previous bound of <i>O</i>(<i>Lg</i>) [LN05], and compares to a lower bound of Ω(<i>L</i>√log <i>g</i>). In a related way, we show that there is an <i>O</i>(log <i>g</i>)-approximation for the 0-extension problem on such graphs, improving over the previous <i>O</i>(<i>g</i>) bound. • We show that every <i>n</i>-vertex shortest-path metric on a graph of genus <i>g</i> embeds into <i>L</i><sub>2</sub> with distortion <i>O</i>(log <i>g</i> + √log <i>n</i>), improving over the previous bound of <i>O</i>(√<i>g</i> log <i>n</i>). Our result is asymptotically optimal for every dependence <i>g</i> = <i>g</i>(<i>n</i>).

[1]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[2]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[3]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[4]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[5]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[6]  Sudipto Guha,et al.  Rounding via Trees : Deterministic Approximation Algorithms forGroup , 1998 .

[7]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[8]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[9]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[10]  Placement Algorithms for Hierarchical Cooperative Caching , 1999, J. Algorithms.

[11]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[12]  Yuval Rabani,et al.  Approximation algorithms for the 0-extension problem , 2001, SODA '01.

[13]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[14]  Robert Krauthgamer,et al.  The intrinsic dimensionality of graphs , 2003, STOC '03.

[15]  Kunal Talwar,et al.  An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.

[16]  Yuri Rabinovich On average distortion of embedding metrics into the line and into L1 , 2003, STOC '03.

[17]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[18]  Satish Rao,et al.  An improved approximation algorithm for the 0-extension problem , 2003, SODA '03.

[19]  James R. Lee Metric decomposition , smooth measures , and clustering , 2004 .

[20]  Robert Krauthgamer,et al.  Approximate classification via earthmover metrics , 2004, SODA '04.

[21]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[22]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[23]  Jon M. Kleinberg,et al.  Metric embeddings with relaxed guarantees , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[24]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[25]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[26]  Bruce M. Maggs,et al.  On hierarchical routing in doubling metrics , 2005, SODA '05.

[27]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[28]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[29]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[30]  Konstantin Makarychev,et al.  How to Play Unique Games Using Embeddings , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[31]  Assaf Naor,et al.  Ramsey partitions and proximity data structures , 2006, FOCS.

[32]  Ittai Abraham,et al.  Strong-diameter decompositions of minor free graphs , 2007, SPAA.

[33]  James R. Lee,et al.  Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[34]  James R. Lee,et al.  Higher Eigenvalues of Graphs , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Sanjeev Arora,et al.  Expander flows, geometric embeddings and graph partitioning , 2009, JACM.

[36]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .