A dynamo model of Jupiter’s magnetic field

Abstract Jupiter’s dynamo is modelled using the anelastic convection-driven dynamo equations. The reference state model is taken from French et al. [2012]. Astrophys. J. Suppl. 202, 5, (11pp), which used density functional theory to compute the equation of state and the electrical conductivity in Jupiter’s interior. Jupiter’s magnetic field is approximately dipolar, but self-consistent dipolar dynamo models are rather rare when the large variation in density and the effective internal heating are taken into account. Jupiter-like dipolar magnetic fields were found here at small Prandtl number, Pr = 0.1 . Strong differential rotation in the dynamo region tends to destroy a dominant dipolar component, but when the convection is sufficiently supercritical it generates a strong magnetic field, and the differential rotation in the electrically conducting region is suppressed by the Lorentz force. This allows a magnetic field to develop which is dominated by a steady dipolar component. This suggests that the strong zonal winds seen at Jupiter’s surface cannot penetrate significantly into the dynamo region, which starts approximately 7000 km below the surface.

[1]  R. H. Mitchell,et al.  Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation , 2009, Journal of Fluid Mechanics.

[2]  Johannes Wicht,et al.  Anelastic dynamo models with variable electrical conductivity: an application to gas giants , 2012, 1210.3245.

[3]  W. Hubbard Thermal structure of Jupiter , 1968 .

[4]  D. Gubbins,et al.  Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure , 2007 .

[5]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[6]  G. Flierl,et al.  The deep wind structure of the giant planets: Results from an anelastic general circulation model , 2009 .

[7]  V. Ridley,et al.  Jovimagnetic secular variation , 2012 .

[8]  Carsten Kutzner,et al.  Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths , 2004 .

[9]  M. Miesch,et al.  Anelastic convection-driven dynamo benchmarks , 2011 .

[10]  C. Russell,et al.  Galileo constraints on the secular variation of the Jovian magnetic field , 2010 .

[11]  C. Jones,et al.  Compressible convection in the deep atmospheres of giant planets , 2009 .

[12]  U. R. Christensen,et al.  Zonal flow driven by strongly supercritical convection in rotating spherical shells , 2002, Journal of Fluid Mechanics.

[13]  G. Flierl,et al.  Scaling laws for convection and jet speeds in the giant planets , 2009, 1011.1713.

[14]  John E. P. Connerney,et al.  Magnetic fields of the outer planets , 1993 .

[15]  Paul H. Roberts,et al.  Equations governing convection in earth's core and the geodynamo , 1995 .

[16]  G. Schubert,et al.  Gravitational signature of rotationally distorted Jupiter caused by deep zonal winds , 2013 .

[17]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[18]  Busse,et al.  Hemispherical dynamos generated by convection in rotating spherical shells , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  G. Glatzmaier,et al.  Compressible convection in a rotating spherical shell. IV - Effects of viscosity, conductivity, boundary conditions, and zone depth , 1981 .

[20]  C. Jones,et al.  The role of inertia in the evolution of spherical dynamos , 2006 .

[21]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[22]  F. Busse,et al.  Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells , 2009, 0904.0799.

[23]  D. Stevenson Planetary magnetic fields , 2003 .

[24]  A. Becker,et al.  AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT , 2012, The Astrophysical Journal Supplement Series.

[25]  Ashwin R. Vasavada,et al.  Jovian atmospheric dynamics: an update after Galileo and Cassini , 2005 .

[26]  Jonathan Aurnou,et al.  Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model , 2005, Nature.

[27]  U. Christensen,et al.  Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration , 1999 .

[28]  T. Gastine,et al.  Dipolar versus multipolar dynamos: the influence of the background density stratification , 2012, 1208.6093.

[29]  Johannes Wicht,et al.  Effects of a radially varying electrical conductivity on 3D numerical dynamos , 2010, 1003.4192.

[30]  Y. Fan,et al.  Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones , 1999 .

[31]  Gauthier Hulot,et al.  Conditions for Earth-like geodynamo models , 2010 .

[32]  T. Guillot,et al.  The Interior of Jupiter , 2004 .

[33]  U. Christensen,et al.  The effect of thermal boundary conditions on dynamos driven by internal heating , 2010 .

[34]  A. Ingersoll,et al.  Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion , 1982 .

[35]  U. Christensen,et al.  Dipole moment scaling for convection-driven planetary dynamos , 2005 .

[36]  C. Jones,et al.  Planetary Magnetic Fields and Fluid Dynamos , 2011 .

[37]  Keke Zhang Spiralling columnar convection in rapidly rotating spherical fluid shells , 1992, Journal of Fluid Mechanics.

[38]  G. Glatzmaier,et al.  Dynamo Models for Planets Other Than Earth , 2010 .

[39]  Richard Holme,et al.  Large-Scale Flow in the Core , 2007 .

[40]  M. Marley,et al.  Optimized Jupiter, Saturn, and Uranus interior models , 1989 .

[41]  C. Jones,et al.  Multiple jets and zonal flow on Jupiter , 2003 .

[42]  C. Jones,et al.  Helicity generation and subcritical behaviour in rapidly rotating dynamos , 2011, Journal of Fluid Mechanics.

[43]  A. Soward,et al.  The onset of thermal convection in a rapidly rotating sphere , 2000, Journal of Fluid Mechanics.

[44]  Ataru Sakuraba,et al.  Generation of a strong magnetic field using uniform heat flux at the surface of the core , 2009 .