Analysis of the Computational Cost of Approximation-Based Hybrid Evolutionary Algorithms in Electromagnetic Design
暂无分享,去创建一个
[1] Frederico G. Guimarães,et al. Hybrid genetic algorithms using quadratic local search operators , 2007 .
[2] J.A. Ramirez,et al. Optimization of Cost Functions Using Evolutionary Algorithms With Local Learning and Local Search , 2006, IEEE Transactions on Magnetics.
[3] Jaime A. Ramírez,et al. Hybrid optimization in electromagnetics using sensitivity information from a neuro-fuzzy model , 2000 .
[4] Pablo Moscato,et al. Memetic algorithms: a short introduction , 1999 .
[5] R. L. Hardy. Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .
[6] Hisao Ishibuchi,et al. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..
[7] Maurizio Repetto,et al. Magnetic design optimization and objective function approximation , 2003 .
[8] G. F. Uler,et al. Design optimization of electrical machines using genetic algorithms , 1995 .
[9] G. F. Uler,et al. A hybrid technique for the optimal design of electromagnetic devices using direct search and genetic algorithms , 1997 .
[10] James Smith,et al. A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.
[11] R. R. Saldanha,et al. Improvements in genetic algorithms , 2001 .