Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing

We report on a novel processing route to prepare La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Cu bulk composites by low-temperature hot pressing. With increasing copper content, the compressive strength of the composites first decrease and then increase owing to the buffering effect of copper, but the magnetocaloric effect reduces to some extent. Copper addition improves the thermal conductivity of the composites, which compensates for the decrease in thermal conductivity due to porosity. A relatively large entropy change of 5.752–7.19 J/(kg K) at 2 T near the Curie temperature (249 K), good thermal conductivity of 7.51–15.55 W/(mK), and improved compressive strength of 151.12–248.0 MPa make these composites attractive magnetic refrigeration materials.

[1]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[2]  R. Ramanujan,et al.  La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing , 2018 .

[3]  Yuan Yuan,et al.  Rare-earth high-entropy alloys with giant magnetocaloric effect , 2017 .

[4]  A. Yan,et al.  LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing , 2016 .

[5]  N. H. Dan,et al.  Influence of Composition on Phase Formation and Magnetocaloric Effect of La-Fe-Co-Si Alloys Prepared by Melt-Spinning Method , 2016, Journal of Electronic Materials.

[6]  L. Xia,et al.  Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition , 2016 .

[7]  O. Gutfleisch,et al.  On the preparation of La(Fe,Mn,Si)13Hx polymer-composites with optimized magnetocaloric properties , 2015 .

[8]  H. Luo,et al.  Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys , 2015 .

[9]  Z. Ou,et al.  Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8 , 2015 .

[10]  J. Liu,et al.  LaFe11.6 Si1.4/Cu Magnetocaloric Composites Prepared by Hot Pressing , 2015, IEEE Transactions on Magnetics.

[11]  P. Fajfar,et al.  Epoxy-bonded La–Fe–Co–Si magnetocaloric plates , 2015 .

[12]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[13]  M. Kuz’min,et al.  Heat exchangers made of polymer-bonded La(Fe,Si)13 , 2014 .

[14]  F. Hu,et al.  Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)(13)-based magnetic refrigeration materials , 2014 .

[15]  Y. Long,et al.  Microstructural evolution and phase transition dependent on annealing temperature and carbon content for LaFe11.5Si1.5Cx compounds prepared by arc-melting , 2013 .

[16]  N. Alford,et al.  Microstructural control and tuning of thermal conductivity in La0.67Ca0.33MnO3±δ , 2012, 1210.0410.

[17]  U. Hannemann,et al.  Novel La(Fe,Si)13/Cu Composites for Magnetic Cooling , 2012 .

[18]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .

[19]  H. Sepehri-Amin,et al.  The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13 , 2012 .

[20]  F. Hu,et al.  Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first‐order systems , 2012 .

[21]  Konstantin P. Skokov,et al.  Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys , 2011 .

[22]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[23]  V. Pecharsky,et al.  Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x=0.5, 1.0) , 2010 .

[24]  Jun Shen,et al.  The study on the microstructure and the magnetocaloric effects in LaFe10.8Co0.7Si1.5C0.2 compound at different annealing times , 2010 .

[25]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[26]  H. Srikanth,et al.  Magnetocaloric effect and refrigerant capacity in charge-ordered manganites , 2009 .

[27]  I. Baker,et al.  Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders , 2007 .

[28]  F. Hu,et al.  Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCOx)11.9Si1.1 , 2005 .

[29]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[30]  Zhidong Zhang,et al.  Giant magnetoresistance and magnetocaloric effects of the Mn1.82V0.18Sb compound , 2004 .

[31]  Z. Altounian,et al.  Effect of Co content on magnetic entropy change and structure of La(Fe1−xCox)11.4Si1.6 , 2003 .

[32]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[33]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[34]  Vitalij K. Pecharsky,et al.  Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys , 2001 .

[35]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[36]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .