GENOMIC CHARACTERIZATION OF PROSTATIC BASAL CELL CARCINOMA.

[1]  A. M. Houghton,et al.  Loss of MGA repression mediated by an atypical polycomb complex promotes tumor progression and invasiveness , 2021, eLife.

[2]  Astrid Gall,et al.  Ensembl 2021 , 2020, Nucleic Acids Res..

[3]  Ze-Guang Han,et al.  Mutational and transcriptomic landscapes of a rare human prostate basal cell carcinoma. , 2020 .

[4]  M. Meyerson,et al.  Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma , 2019, Molecular Cancer Research.

[5]  Shuhong Zhao,et al.  Prostate Luminal Progenitor Cells in Development and Cancer. , 2018, Trends in cancer.

[6]  Christopher T. Saunders,et al.  Strelka2: fast and accurate calling of germline and somatic variants , 2018, Nature Methods.

[7]  Christopher W. Whelan,et al.  Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing , 2018, Cell.

[8]  C. Sander,et al.  Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets , 2018, Nature Genetics.

[9]  Yi Mi Wu,et al.  The long tail of oncogenic drivers in prostate cancer , 2018, Nature Genetics.

[10]  Nikhil Wagle,et al.  Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors , 2017, Nature Communications.

[11]  P. Humphrey,et al.  Histopathology of Prostate Cancer. , 2017, Cold Spring Harbor perspectives in medicine.

[12]  J. Isaacs,et al.  Low p16INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone , 2017, The Prostate.

[13]  P. McPherson,et al.  Regulation of DENND3, the exchange factor for the small GTPase Rab12 through an intramolecular interaction , 2017, The Journal of Biological Chemistry.

[14]  Joachim Weischenfeldt,et al.  SvABA: genome-wide detection of structural variants and indels by local assembly , 2018, Genome research.

[15]  V. W. Lui,et al.  The cylindromatosis (CYLD) gene and head and neck tumorigenesis , 2016, Cancers of the Head & Neck.

[16]  R. Huddart,et al.  The genomic landscape of testicular germ cell tumours: from susceptibility to treatment , 2016, Nature Reviews Urology.

[17]  R. Levine,et al.  Molecular therapy for acute myeloid leukaemia , 2016, Nature Reviews Clinical Oncology.

[18]  A. Ashworth,et al.  Inherited cylindromas: lessons from a rare tumour. , 2015, The Lancet. Oncology.

[19]  J. Epstein,et al.  A subset of prostatic basal cell carcinomas harbor the MYB rearrangement of adenoid cystic carcinoma. , 2015, Human pathology.

[20]  Nitin Patel,et al.  Expression and Functional Role of Orphan Receptor GPR158 in Prostate Cancer Growth and Progression , 2015, PloS one.

[21]  Sohrab P. Shah,et al.  TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data , 2014, Genome research.

[22]  Masashi Kato,et al.  Basal cell carcinoma arising in the prostate , 2014, International journal of urology : official journal of the Japanese Urological Association.

[23]  Z. Xiong,et al.  Knockdown of protein tyrosine phosphatase receptor U inhibits growth and motility of gastric cancer cells. , 2014, International journal of clinical and experimental pathology.

[24]  Hualiang Jiang,et al.  Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. , 2014, Carcinogenesis.

[25]  M. Rubin,et al.  Proposed Morphologic Classification of Prostate Cancer With Neuroendocrine Differentiation , 2014, The American journal of surgical pathology.

[26]  Aaron R Cooper,et al.  Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells , 2013, Proceedings of the National Academy of Sciences.

[27]  N. Kübler,et al.  Cylindroma of head and neck: review of the literature and report of two rare cases. , 2013, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[28]  J. Carette,et al.  A Reporter Screen in a Human Haploid Cell Line Identifies CYLD as a Constitutive Inhibitor of NF-κB , 2013, PloS one.

[29]  W. Isaacs,et al.  Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer , 2013, The Journal of pathology.

[30]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[31]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[32]  M. Heinrich,et al.  Gastrointestinal stromal tumours: origin and molecular oncology , 2011, Nature Reviews Cancer.

[33]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[34]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[35]  J. Jorcano,et al.  An inactivating CYLD mutation promotes skin tumor progression by conferring enhanced proliferative, survival and angiogenic properties to epidermal cancer cells , 2010, Oncogene.

[36]  Jiaoti Huang,et al.  Identification of a Cell of Origin for Human Prostate Cancer , 2010, Science.

[37]  Martin J. Aryee,et al.  Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements , 2010, Nature Genetics.

[38]  M. Soloway,et al.  Basal cell carcinoma of the prostate: current concepts , 2007, BJU international.

[39]  J. Epstein,et al.  Basal Cell Carcinoma of the Prostate: A Clinicopathologic Study of 29 Cases , 2007, The American journal of surgical pathology.

[40]  G. Fuller,et al.  A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors , 2005, Oncogene.

[41]  T. Schlomm,et al.  Simultaneous tumour-like, atypical basal cell hyperplasia and acinar adenocarcinoma of the prostate: a comparative morphological and genetic approach , 2005, Virchows Archiv.

[42]  Shao-Cong Sun,et al.  Negative Regulation of JNK Signaling by the Tumor Suppressor CYLD* , 2004, Journal of Biological Chemistry.

[43]  D. Grignon,et al.  Basal Cell Proliferations of the Prostate Other Than Usual Basal Cell Hyperplasia: A Clinicopathologic Study of 23 Cases, Including Four Carcinomas, With a Proposed Classification , 2004, The American journal of surgical pathology.

[44]  D. Bostwick,et al.  Adenoid Cystic/Basal Cell Carcinoma of the Prostate: Clinicopathologic Findings in 19 Cases , 2003, The American journal of surgical pathology.

[45]  René Bernards,et al.  Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB , 2003, Nature.

[46]  G. Courtois,et al.  The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination , 2003, Nature.

[47]  P. Humphrey,et al.  Basal Cell Hyperplasia in the Peripheral Zone of the Prostate , 2003, Modern Pathology.

[48]  Maria Merino,et al.  Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. , 2002, Cancer cell.

[49]  J. Fletcher,et al.  Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. , 2002, Human pathology.

[50]  A. Ashworth,et al.  Identification of the familial cylindromatosis tumour-suppressor gene , 2000, Nature Genetics.

[51]  N. Jenkins,et al.  Mga, a dual‐specificity transcription factor that interacts with Max and contains a T‐domain DNA‐binding motif , 1999, The EMBO journal.

[52]  Ximing J. Yang,et al.  Distinction of basaloid carcinoma of the prostate from benign basal cell lesions by using immunohistochemistry for bcl-2 and Ki-67. , 1998, Human pathology.

[53]  D. S. Coffey,et al.  Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. , 1998, The American journal of pathology.

[54]  Bruno Amati,et al.  Oncogenic activity of the c-Myc protein requires dimerization with Max , 1993, Cell.

[55]  D. Grignon,et al.  Basal cell hyperplasia, adenoid basal cell tumor, and adenoid cystic carcinoma of the prostate gland: an immunohistochemical study. , 1988, Human pathology.

[56]  Ximing J. Yang,et al.  MYB-NFIB gene fusion in prostatic basal cell carcinoma: clinicopathologic correlates and comparison with basal cell adenoma and florid basal cell hyperplasia , 2019, Modern Pathology.

[57]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..