The Representation Theory of the Increasing Monoid

We study the representation theory of the increasing monoid. Our results provide a fairly comprehensive picture of the representation category: for example, we describe the Grothendieck group (including the effective cone), classify injective objects, establish properties of injective and projective resolutions, construct a derived auto-duality, and so on. Our work is motivated by numerous connections of this theory to other areas, such as representation stability, commutative algebra, simplicial theory, and shuffle algebras.

[1]  Robert P. Laudone Syzygies of secant ideals of Pl\"ucker-embedded Grassmannians are generated in bounded degree , 2018, 1803.04259.

[2]  The Existence of Pure Free Resolutions , 2007, 0709.1529.

[3]  Steven V. Sam,et al.  Ideals of bounded rank symmetric tensors are generated in bounded degree , 2015, 1608.01722.

[4]  Jan Draisma,et al.  Noetherianity up to Symmetry , 2013, 1310.1705.

[5]  U. Nagel,et al.  Equivariant Hilbert Series of Monomial Orbits , 2016, 1608.06372.

[6]  Vladimir Dotsenko,et al.  Shuffle algebras, homology, and consecutive pattern avoidance , 2011, 1109.2690.

[7]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.

[8]  Robert Krone,et al.  Hilbert series of symmetric ideals in infinite polynomial rings via formal languages , 2016, 1606.07956.

[9]  Uwe Nagel,et al.  Castelnuovo–Mumford Regularity up to Symmetry , 2018, 1806.00457.

[10]  D. E Cohen,et al.  On the laws of a metabelian variety , 1967 .

[11]  Matthias Aschenbrenner,et al.  Finite generation of symmetric ideals , 2004, math/0411514.

[12]  J. Ellenberg,et al.  Homology of FI-modules , 2015, 1506.01022.

[13]  Uwe Nagel,et al.  FI- and OI-modules with varying coefficients , 2017, Journal of Algebra.

[14]  Seth Sullivant,et al.  Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.

[15]  W. Dwyer Homology of integral upper-triangular matrices , 1985 .

[16]  Regularity bounds for twisted commutative algebras , 2017, Bulletin of the London Mathematical Society.

[17]  Maria O. Ronco Shuffle bialgebras , 2007, math/0703437.

[18]  Steven V. Sam,et al.  Introduction to twisted commutative algebras , 2012, 1209.5122.

[19]  J. Roos Derived Functors of Inverse Limits Revisited , 2006 .

[20]  D. Eisenbud,et al.  Betti numbers of graded modules and cohomology of vector bundles , 2007, 0712.1843.

[21]  Steven V. Sam,et al.  Stability in the homology of unipotent groups , 2017, Algebra & Number Theory.

[22]  Uwe Nagel,et al.  Equivariant Hilbert Series in non-Noetherian Polynomial Rings , 2015, 1510.02757.

[23]  Steven V. Sam,et al.  STABILITY PATTERNS IN REPRESENTATION THEORY , 2013, Forum of Mathematics, Sigma.

[24]  Steven V. Sam,et al.  Gröbner methods for representations of combinatorial categories , 2014, 1409.1670.