Miniaturized Phase-Shifters for Ka-Band Phased Array Antennas

Realizing robust and stable two-way links between the mobile users and the satellite is an extremely challenging RF/Microwave engineering problem. Low cost and low pro le phased array is considered as the best solution for this problem. High performance low cost and miniaturized variable phase shifter is a key enabling technology for such complex smart phased array antenna system. This thesis aims at the investigation of the existing solutions to realize miniaturized, low-cost and at the same time integrable phase shifters for commercial phased array antenna systems. Among few existing approaches, analog phase shifting devices based on voltage-tunable materials o ers a promising solution. Liquid Crystal (LC) and Barium Strontium Titanate (BST) are the two voltage tunable materials, which, beside their own primary applications, have found their way into Microwave and mm-Wave tunable device technologies. In this study the utilization of LC and BST in analog phase shifters has been rigorously investigated, the advantages and drawbacks of each when applied in di erent realizations have been discussed and further development and improvements in designs have been suggested. To achieve more compact designs for Ka-band phase shifters, a comprehensive design methodology for tunable lter-type phase shifter is proposed in this dissertation. The most commonly used phase shifting architectures for the phased array antennas are RF, LO, IF and base-band phase shifting. It should be mentioned that LO, IF and base-band phase shifting are not suitable for phased arrays with large number of elements due to the formidable cost and complexity, particularly for Tx phased array systems which require one phase shifter per antenna element to meet the radiation mask. Therefore, this thesis is concentrated on RF (Microwave/mm-Wave) phase shifting, which is the most common for large phased array antenna systems. Since one of the most important requirement in the design of Ka-Band phase shifters for phased array systems is the high level of miniaturization, dictated by antenna element spacing constraint, the thesis also addresses the highly compact structure of such phase shifters. In particular, a novel phase shifting concept based on very high dielectric constant materials has been explored. It is shown that by using this new concept, a highly miniaturized variable phase shifter with more than 360◦ phase tuning range is attainable.

[1]  Paul Laurent,et al.  Improvement of an Inverted Microstrip Line-Based Microwave Tunable Phase-Shifter Using Liquid Crystal , 2003, 2003 33rd European Microwave Conference, 2003.

[2]  Tae-Soon Yun,et al.  Coplanar ferroelectric phase shifter on silicon substrate with TiO/sub 2/ buffer layer , 2005, 2005 European Microwave Conference.

[3]  R. Jakoby,et al.  Liquid-crystal varactors with fast switching times for microwave applications , 2008 .

[5]  K. Tarumi,et al.  Dynamic Behaviour of Twisted Nematic Liquid Crystals , 1992 .

[6]  J. Howell Limited scan antennas , 1974 .

[7]  G. Koepf,et al.  Ferroelectric films: nonlinear properties and applications in microwave devices , 1997, 1997 27th European Microwave Conference.

[8]  D. Lippens,et al.  A 310/spl deg//3.6-dB K-band phaseshifter using paraelectric BST thin films , 2006, IEEE Microwave and Wireless Components Letters.

[9]  Safieddin Safavi-Naeini,et al.  A Taylor synthesis/optimization method for 2D minimum size transmitting phased array antenna , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[10]  R. Jakoby,et al.  Compact artificial line phase shifter on ferroelectric thick-film ceramics , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[11]  D. Lippens,et al.  A 360$^{\circ}$ BST Phase Shifter With Moderate Bias Voltage at 30 GHz , 2007, IEEE Transactions on Microwave Theory and Techniques.

[12]  R. Cava Dielectric materials for applications in microwave communications , 2001 .

[13]  Sunggi Baik,et al.  Electrically Tunable Phase Shifters With Air-Dielectric Sandwich Structure , 2002 .

[14]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[15]  Shiban K. Koul,et al.  Dielectric and ferrite phase shifters , 1991 .

[16]  A. K. Jastrzebski,et al.  A tunable all-pass MMIC active phase shifter , 2002 .

[17]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[18]  N. F. Kartenko,et al.  Low loss microwave ferroelectric ceramics for high power tunable devices , 2010 .

[19]  Compact Phase Shifter Design Using Barium Strontium Titanate , 2003 .

[20]  M. Ruberto,et al.  A CMOS Bidirectional 32-Element Phased-Array Transceiver at 60 GHz With LTCC Antenna , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  S. Gevorgian,et al.  Filter-phase shifters based on thin film ferroelectric varactors , 2004, European Microwave Conference.

[22]  S. Rudner,et al.  HTS/ferroelectric devices for microwave applications , 1997, IEEE Transactions on Applied Superconductivity.

[23]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[24]  D. Remiens,et al.  Deposition of Ferroelectric BST Thin Films by Sol Gel Route in View of Electronic Applications , 2003 .

[25]  Kamal Sarabandi,et al.  An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays , 2003 .

[26]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[27]  M.F. Iskander,et al.  Low-Cost Microstrip-Line-Based Ferrite Phase Shifter Design for Phased Array Antenna Applications , 2007, IEEE Antennas and Wireless Propagation Letters.

[28]  P. Grenier,et al.  Role of pelvic phased array magnetic resonance imaging in staging of prostate cancer specifically in patients diagnosed with clinically locally advanced tumours by digital rectal examination , 2013, World Journal of Urology.

[29]  R. Jakoby,et al.  Characterization of the Field-Dependent Permittivity of Nonlinear Ferroelectric Films Using Tunable Coplanar Lines , 2007, IEEE Microwave and Wireless Components Letters.

[30]  Alexander Gaebler,et al.  Tunable liquid crystal phase shifter for microwave frequencies , 2009 .

[31]  N. F. Kartenko,et al.  High dielectric constant microwave ceramics , 2001 .

[32]  N. F. Kartenko,et al.  Ceramic materials for use in microwave electronics , 1999 .

[33]  E. G. Spencer,et al.  A New Technique in Ferrite Phase Shifting for Beam Scanning of Microwave Antennas , 1957, Proceedings of the IRE.

[34]  Alberto Valdes-Garcia,et al.  A SiGe BiCMOS 16-element phased-array transmitter for 60GHz communications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[35]  R. Jakoby,et al.  Cavity perturbation method for characterization of liquid crystals up to 35 GHz , 2004, 34th European Microwave Conference, 2004..

[36]  A. Deleniv,et al.  Tunable ferroelectric filter-phase shifter , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[37]  Hongwei Chen,et al.  Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters , 2008 .

[38]  R. Jakoby,et al.  Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[39]  Y. Poplavko,et al.  Low loss phase shifter based on piezo-controlled layered dielectric structure , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[40]  R. York,et al.  Compact Analog Phase Shifters using Thin-Film (Ba,Sr)TiO3 Varactors , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[41]  R. Jakoby,et al.  Passive tunable liquid crystal finline phase shifter for millimeter waves , 2005, 2005 European Microwave Conference.

[42]  S. Trolier-McKinstry,et al.  Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications , 2001 .

[43]  T. Itoh Numerical techniques for microwave and millimeter-wave passive structures , 1989 .

[44]  Mikio Tsuji,et al.  A microstrip‐line phase shifter constructed by a tunable filter , 2007 .

[46]  M. Lanagan,et al.  BaTiO3‐Based Ceramics for Tunable Microwave Applications , 2004 .

[47]  Felix A. Miranda,et al.  A KU-BAND GOLD/BAXSR1-XTIO3/LAALO3 CONDUCTOR/THIN-FILM FERROELECTRIC MICROSTRIP LINE PHASE SHIFTER FOR ROOM-TEMPERATURE COMMUNICATIONS APPLICATIONS , 1999 .

[49]  Yuliang Zheng,et al.  Low-Cost Phased-Array Antenna Using Compact Tunable Phase Shifters Based on Ferroelectric Ceramics , 2011, IEEE Transactions on Microwave Theory and Techniques.

[50]  R. Jakoby,et al.  Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line , 2005, IEEE Transactions on Microwave Theory and Techniques.

[51]  Alan J. Fenn,et al.  Focused Microwave Phased Array Thermotherapy for Ablation of Early-Stage Breast Cancer: Results of Thermal Dose Escalation , 2004, Annals of Surgical Oncology.

[52]  Gopalan Srinivasan,et al.  Ferrite-ferroelectric hybrid wave phase shifters , 2007 .

[53]  Robert A. York,et al.  Distributed analog phase shifters with low insertion loss , 1999 .

[54]  P. Sheng,et al.  Introduction to Liquid Crystals , 1976 .

[55]  Harry J. Coles,et al.  Liquid crystal ‘blue phases’ with a wide temperature range , 2005, Nature.

[56]  Theodore S. Rappaport,et al.  State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications , 2011, Proceedings of the IEEE.

[57]  R. Jakoby,et al.  Liquid Crystal Based Reconfigurable Antenna Arrays , 2010 .

[58]  Raafat R. Mansour,et al.  Microwave Filters for Communication Systems: Fundamentals, Design and Applications , 2007 .

[59]  Nan Ni,et al.  Ku-band analog phase shifters using individually designed all-pass networks with BST tunable capacitors , 2011, 2011 IEEE Radio and Wireless Symposium.

[60]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[61]  G. L. Matthaei,et al.  DESIGN OF MICROWAVE FILTERS, IMPEDANCE-MATCHING NETWORKS, AND COUPLING STRUCTURES. VOLUME 2 , 1963 .

[62]  W. D. Jones,et al.  Keeping cars from crashing , 2001 .

[63]  Susanne Stemmer,et al.  Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering , 2003 .

[64]  A. Manabe,et al.  Liquid crystals for microwave applications , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[65]  Dong‐Wan Kim,et al.  Voltage tunable dielectric properties of rf sputtered Bi2O3-ZnO-Nb2O5 pyrochlore thin films , 2002 .

[66]  Erik L. Kollberg,et al.  CAD models for shielded multilayered CPW , 1995 .

[67]  A. Villers,et al.  Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. , 2006, The Journal of urology.

[68]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[69]  R. Jakoby,et al.  Compact tunable loaded line phase shifter based on screen printed BST thick film , 2011, 2011 German Microwave Conference.

[70]  Guan-Leng Tan,et al.  RF MEMS phase shifters: design and applications , 2002 .

[71]  R. Jakoby,et al.  Compact tunable Ka-band phase shifter based on liquid crystals , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[72]  J. Wenger,et al.  Automotive radar - status and perspectives , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[73]  M. Allen,et al.  2.4 GHz continuously variable ferroelectric phase shifters using all-pass networks , 2003, IEEE Microwave and Wireless Components Letters.

[74]  James S. Speck,et al.  Monolithic Ka-band phase shifter using voltage tunable BaSrTiO/sub 3/ parallel plate capacitors , 2000 .

[75]  X. Yao,et al.  Dielectric properties of Mg-doped Ba0.6Sr0.4TiO3 ceramics prepared by using sol–gel derived powders , 2010 .

[76]  J. Zhai,et al.  Improvement of Dielectric Properties of Graded Co-Doped (Ba0.7Sr0.3) TiO3 Thin Films Fabricated by Sol–Gel Method , 2007 .

[77]  Duixian Liu,et al.  A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[78]  A. Tagantsev,et al.  Temperature dependence of the dielectric tunability of pyrochlore bismuth zinc niobate thin films , 2005 .

[79]  Martin Schneider,et al.  Automotive Radar – Status and Trends , 2005 .

[80]  Danial Ehyaie,et al.  Novel Approaches to the Design of Phased Array Antennas , 2012 .

[81]  Mohd Khairul Mohd Salleh,et al.  Synthesis of quarter wavelength side‐coupled ring (QSCR) resonator applications to bandpass filters design , 2008 .

[82]  Paul B. Ruffin,et al.  MEMS-based phased arrays for army applications , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[83]  R. Jakoby,et al.  Compact tunable periodically LC loaded microstrip line for phase shifting applications , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[84]  Dariush Mirshekar-Syahkal,et al.  Millimeter-wave liquid-crystal-based tunable bandpass filter , 2012, 2012 IEEE Radio and Wireless Symposium.

[85]  Theodore S. Saad,et al.  Microwave engineers' handbook , 1971 .

[86]  N. Alexopoulos,et al.  Planar microwave integrated phase-shifter design with high purity ferroelectric material , 1997 .

[87]  C. Balanis Advanced Engineering Electromagnetics , 1989 .