Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus

[1]  G. Muricy,et al.  High reduction of staphylococcal biofilm by aqueous extract from marine sponge-isolated Enterobacter sp. , 2020, Research in microbiology.

[2]  J. Moon,et al.  Study on the Identification Methods for Effective Microorganisms in Commercially Available Organic Agriculture Materials , 2020, Microorganisms.

[3]  Wenjun Li,et al.  Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae , 2020, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[4]  H. Corke,et al.  Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism , 2020, Food Control.

[5]  Jintae Lee,et al.  Fatty Acids as Antibiofilm and Antivirulence Agents. , 2020, Trends in microbiology.

[6]  Ai-Qun Jia,et al.  Quorum sensing inhibition and tobramycin acceleration in Chromobacterium violaceum by two natural cinnamic acid derivatives , 2020, Applied Microbiology and Biotechnology.

[7]  A. Duilio,et al.  Inhibition of Bacterial Biofilm Formation , 2020, Bacterial Biofilms.

[8]  S. Vigneswaran,et al.  In vitro and in silico investigation of caprylic acid effect on multi drug resistant (MDR) Klebsiella pneumoniae biofilm , 2020, Journal of biomolecular structure & dynamics.

[9]  J. Lopez-Ribot,et al.  Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. , 2020, ACS applied materials & interfaces.

[10]  M. Tutino,et al.  Pentadecanal inspired molecules as new anti-biofilm agents against Staphylococcus epidermidis , 2018, Biofouling.

[11]  E. Schwarz,et al.  Staphylococcus aureus Evasion of Host Immunity in the Setting of Prosthetic Joint Infection: Biofilm and Beyond , 2018, Current Reviews in Musculoskeletal Medicine.

[12]  P. Tammela,et al.  Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains , 2018, BMC Microbiology.

[13]  D. Campoccia,et al.  Implant infections: adhesion, biofilm formation and immune evasion , 2018, Nature Reviews Microbiology.

[14]  X. Daura,et al.  Quorum Sensing Signaling and Quenching in the Multidrug-Resistant Pathogen Stenotrophomonas maltophilia , 2018, Front. Cell. Infect. Microbiol..

[15]  C. Guilhen,et al.  Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties , 2017, Molecular microbiology.

[16]  M. Tutino,et al.  Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm , 2017, Front. Cell. Infect. Microbiol..

[17]  U. Hentschel,et al.  Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation , 2017, Front. Microbiol..

[18]  S. Zinjarde,et al.  Antibiofilm potential of a tropical marine Bacillus licheniformis isolate: role in disruption of aquaculture associated biofilms , 2016 .

[19]  B. Souweine,et al.  Anti-biofilm Activity as a Health Issue , 2016, Front. Microbiol..

[20]  V. Krzyžánek,et al.  Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film , 2016, Folia Microbiologica.

[21]  Georges Feller,et al.  Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa , 2015, Front. Microbiol..

[22]  K. Sauer,et al.  Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid , 2015, Pharmaceuticals.

[23]  D. P. Mishra,et al.  Inhibition of virulence of Staphylococcus aureus – a food borne pathogen – by squalene, a functional lipid , 2015 .

[24]  J. M. Dow,et al.  The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators , 2015, PLoS pathogens.

[25]  H. Fallahi,et al.  A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms. , 2014, Journal of medical microbiology.

[26]  M. Soudi,et al.  Unsaturated Fatty Acid, cis-2-Decenoic Acid, in Combination with Disinfectants or Antibiotics Removes Pre-Established Biofilms Formed by Food-Related Bacteria , 2014, PloS one.

[27]  M. Otto Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. , 2013, Annual review of medicine.

[28]  W. Haggard,et al.  Cis-2-decenoic Acid Inhibits S. aureus Growth and Biofilm In Vitro: A Pilot Study , 2012, Clinical orthopaedics and related research.

[29]  Gordon Ramage,et al.  Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. , 2010, FEMS microbiology letters.

[30]  M. Łukaszewicz,et al.  Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation , 2010, PloS one.

[31]  S. Karutha Pandian,et al.  In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms , 2010, Biofouling.

[32]  A. Lemme,et al.  Streptococcus mutans Inhibits Candida albicans Hyphal Formation by the Fatty Acid Signaling Molecule trans‐2‐Decenoic Acid (SDSF) , 2010, Chembiochem : a European journal of chemical biology.

[33]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[34]  D. Davies,et al.  A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms , 2008, Journal of bacteriology.

[35]  David Hernández,et al.  Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. , 2008, FEMS microbiology letters.

[36]  James D Bryers,et al.  Medical biofilms. , 2008, Biotechnology and bioengineering.