Solvate structures and spectroscopic characterization of LiTFSI electrolytes.

A Raman spectroscopic evaluation of numerous crystalline solvates with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI or LiN(SO2CF3)2) has been conducted over a wide temperature range. Four new crystalline solvate structures-(PHEN)3:LiTFSI, (2,9-DMPHEN)2:LiTFSI, (G3)1:LiTFSI and (2,6-DMPy)1/2:LiTFSI with phenanthroline, 2,9-dimethyl[1,10]phenanthroline, triglyme, and 2,6-dimethylpyridine, respectively-have been determined to aid in this study. The spectroscopic data have been correlated with varying modes of TFSI(-)···Li(+) cation coordination within the solvate structures to create an electrolyte characterization tool to facilitate the Raman band deconvolution assignments for the determination of ionic association interactions within electrolytes containing LiTFSI. It is found, however, that significant difficulties may be encountered when identifying the distributions of specific forms of TFSI(-) anion coordination present in liquid electrolyte mixtures due to the wide range of TFSI(-)···Li(+) cation interactions possible and the overlap of the corresponding spectroscopic data signatures.

[1]  M. Delville,et al.  Lithium solvation and diffusion in the 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid , 2008 .

[2]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties , 2013 .

[3]  Daniel M. Seo,et al.  An Alternative Ionic Conductivity Mechanism for Plastic Crystalline Salt–Lithium Salt Electrolyte Mixtures , 2012 .

[4]  P. Bruce,et al.  Structure of LiN(CF3SO2)2, a novel salt for electrochemistry , 1994 .

[5]  Liquan Chen,et al.  Spectroscopic studies on interactions and microstructures in propylene carbonate—LiTFSI electrolytes , 2001 .

[6]  D. Talaga,et al.  Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[7]  M. Delville,et al.  Lithium solvation in a PMMA membrane plasticized by a lithium‐conducting ionic liquid based on 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide , 2008 .

[8]  Liquan Chen,et al.  Ion transport in polyacrylonitrile-based electrolytes with high LiTFSI contents , 2001 .

[9]  L. Edman Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI , 2000 .

[10]  Joshua L. Allen,et al.  Solvate Structures and Computational/Spectroscopic Characterization of Lithium Difluoro(oxalato)borate (LiDFOB) Electrolytes , 2013 .

[11]  T. Fujimori,et al.  Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. , 2006, The journal of physical chemistry. B.

[12]  D. Desmarteau,et al.  Synthesis and structures of alkaline earth metal salts of bis[(trifluoromethyl)sulfonyl]imide , 2005 .

[13]  W. Henderson,et al.  Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. , 2005, The journal of physical chemistry. A.

[14]  Daniel M. Seo,et al.  Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms , 2014 .

[15]  P. Bruce,et al.  Structure of the polymer electrolyte poly(ethylene oxide)3: LiN(SO2CF3)2 determined by powder diffraction using a powerful Monte Carlo approach , 1996 .

[16]  T. Fujimori,et al.  Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. , 2007, The journal of physical chemistry. B.

[17]  Daniel M. Seo,et al.  Poly[bis(acetonitrile-κN)bis[μ3-bis(trifluoromethanesulfonyl)imido-κ4 O,O′:O′′:O′′′]dilithium] , 2011, Acta Crystallographica Section E.

[18]  S. Seki,et al.  Raman spectroscopic studies and ab initio calculations on conformational isomerism of 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)amide solvated to a lithium ion in ionic liquids: effects of the second solvation sphere of the lithium ion. , 2010, The journal of physical chemistry. B.

[19]  Feng Wu,et al.  The structure–activity relationship studies of binary room temperature complex electrolytes based on LiTFSI and organic compounds with acylamino group , 2007 .

[20]  P. Johansson,et al.  Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI , 2005 .

[21]  W. Henderson,et al.  Glyme−Lithium Bis(trifluoromethanesulfonyl)imide and Glyme−Lithium Bis(perfluoroethanesulfonyl)imide Phase Behavior and Solvate Structures , 2005 .

[22]  S. Seki,et al.  Solvation of Lithium Ion in N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)-amide Using Raman and Multinuclear NMR Spectroscopy , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[23]  Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes , 2014 .

[24]  N. Taylor,et al.  Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy , 2002 .

[25]  P. Johansson,et al.  Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. , 2009, The journal of physical chemistry. A.

[26]  Jou‐Hyeon Ahn,et al.  An imidazolium based ionic liquid electrolyte for lithium batteries , 2010 .

[27]  Han Sang-Don,et al.  リチウムジフルオロ(オキサラト)ボレート(LiDFOB)電解質の溶媒和物構造と計算的分光特性 , 2013 .

[28]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association , 2012 .

[29]  W. Henderson,et al.  Raman study of tetraglyme-LiClO4 solvate structures , 2004 .

[30]  Yong‐Sheng Hu,et al.  Ionic Conductivity and Association Studies of Novel RTMS Electrolyte Based on LiTFSI and Acetamide , 2004 .

[31]  C. Stern,et al.  Structural comparisons of fast ion conductors consisting of Li[(CF3SO2)2N] complexes with cryptands or crown ether , 2000 .

[32]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[33]  Andrew L. Johnson,et al.  Structural Diversity in Lewis‐Base Complexes of Lithium Triflamide , 2003 .

[34]  P. Johansson,et al.  Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI) , 1998 .

[35]  M. Winter,et al.  Ionic mobility in ternary polymer electrolytes for lithium-ion batteries , 2012 .

[36]  Michael Holzapfel,et al.  Raman study of lithium coordination in EMI‐TFSI additive systems as lithium‐ion battery ionic liquid electrolytes , 2007 .

[37]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts , 2012 .

[38]  Feng Wu,et al.  Novel Binary Room-Temperature Complex System Based on LiTFSI and 2-Oxazolidinone and Its Characterization as Electrolyte , 2007 .

[39]  P. Johansson,et al.  The imide ion: potential energy surface and geometries , 1998 .

[40]  W. Henderson,et al.  Raman study of crystalline solvates between glymes CH3(OCH2CH2)nOCH3(n = 1, 2 and 3) and LiClO4 , 2004 .

[41]  Yong‐Sheng Hu,et al.  Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[42]  W. Henderson,et al.  Phase Behavior of Ionic Liquid–LiX Mixtures: Pyrrolidinium Cations and TFSI– Anions – Linking Structure to Transport Properties , 2011 .

[43]  R. Torresi,et al.  Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. , 2008, The journal of physical chemistry. B.