Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb∕GaSb and GaInAsSb∕InAs alloys as a function of composition

Using atomistic pseudopotential calculations we predict the evolution of the valence-band maximum energy Eυ(x,y) and conduction-band minimum energy Ec(x,y) for a compositionally graded quaternary Ga1−yInyAsxSb1−x alloy lattice matched to GaSb or InAs as a function of (x,y) or, equivalently, as a function of distance from the substrate. We find upward-concave bowing for both Ec and Eυ, in contradiction with simple interpolative models. A transition from staggered (type II) to broken-gap (type III) lineup relative to GaSb is predicted to occur at x=0.81 and y=0.92 on a GaSb substrate, and at x=0.59 and y=0.62 on an InAs substrate. In the latter case, the quaternary alloy has a minimum gap at x=0.85 and y=0.87.

[1]  Optical Properties of High-Quality Ga1-xInxAs1-ySby/InAs Grown by Liquid-Phase Epitaxy , 1994 .

[2]  Krebs,et al.  Giant Optical Anisotropy of Semiconductor Heterostructures with No Common Atom and the Quantum-Confined Pockels Effect. , 1996, Physical review letters.

[3]  M. Mikhailova,et al.  Type II heterojunctions in an InGaAsSb/GaSb system: Magnetotransport properties , 2001 .

[4]  M. L. Tilton,et al.  Comparing pseudopotential predictions for InAs/GaSb superlattices , 2002 .

[5]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[6]  Dimitri A. Antoniadis,et al.  Hole mobility enhancements in strained Si/Si1-yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1-xGex (x , 2001 .

[7]  Adler,et al.  Atomic-scale structure of disordered Ga1-xInxP alloys. , 1995, Physical review. B, Condensed matter.

[8]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[9]  A. J. Williamson,et al.  COMPARISON OF TWO METHODS FOR DESCRIBING THE STRAIN PROFILES IN QUANTUM DOTS , 1997, cond-mat/9711126.

[10]  A. Zunger,et al.  Predicting interband transition energies for InAs/GaSb superlattices using the empirical pseudopotential method , 2003 .

[11]  M. O. Manasreh,et al.  Antimonide-Related Strained-Layer Heterostructures , 1997 .

[12]  I. Vurgaftman,et al.  Type II W, interband cascade and vertical-cavity surface-emitting mid-IR lasers , 1998 .

[13]  Alex Zunger,et al.  Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices , 2001 .

[14]  Jerry R. Meyer,et al.  Anticrossing semiconducting band gap in nominally semimetallic InAs/GaSb superlattices , 2000 .

[15]  Wei,et al.  Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering. , 1994, Physical review. B, Condensed matter.

[16]  A. Joullié,et al.  Croissance par épitaxie en phase liquide et caractérisation d'alliages Ga1-xIoxAsySb1-y à paramètre de maille accordé sur celui de GaSb , 1987 .

[17]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[18]  J. Zyskind,et al.  Liquid phase epitaxial Ga1-xInxAsySb1-y lattice-matched to (100) GaSb over the 1.71 to 2.33μm wavelength range , 1985 .

[19]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[20]  A. Zunger,et al.  Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization. , 2001, Physical review letters.

[21]  Alex Zunger,et al.  Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices , 2002 .

[22]  Gail J. Brown,et al.  Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation , 2004 .

[23]  Joan Adler,et al.  Atomic-scale structure of disordered Ga{sub 1{minus}{ital x}}In{sub {ital x}}P alloys , 1995 .

[24]  D. W. Kisker,et al.  GaInAsSb metastable alloys grown by organometallic vapor phase epitaxy , 1986 .

[25]  Brian R. Bennett,et al.  Growth and characterisation of InAs/InGaSb/InAs/AlSb infrared laser structures , 1998 .

[26]  G. A. Baraff,et al.  Calculating the optical properties of multidimensional heterostructures: Application to the modeling of quaternary quantum well lasers , 1993 .

[27]  A. Zunger,et al.  Bond lengths around isovalent impurities and in semiconductor solid solutions , 1984 .

[28]  Michael S. Shur,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 1683 Effect of interface structure on the optical properties of InAs'GaSb laser active regions , 2002 .

[29]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[30]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[31]  I. Vurgaftman,et al.  Dependence of type II “W” mid-infrared photoluminescence and lasing properties on growth conditions , 2003 .

[32]  A. Zunger,et al.  Anticrossing and coupling of light-hole and heavy-hole states in (001) GaAs/Al{sub x}Ga{sub 1-x}As heterostructures , 2000 .

[33]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[34]  A. Williams,et al.  Studies of the Ga1-xInxAs1-ySby quaternary alloy system I. liquid-phase epitaxial growth and assessment , 1986 .

[35]  A. Zunger,et al.  Ground- and excited-state properties of LiF in the local-density formalism , 1977 .

[36]  G. B. Stringfellow,et al.  OMVPE Growth of Metastable GaAsSb and GaInAsSb Alloys Using TBAs and TBDMSb , 1996 .

[37]  Gregory C. Dente,et al.  Pseudopotential methods for superlattices: Applications to mid-infrared semiconductor lasers , 1999 .

[38]  Christopher L. Felix,et al.  Optimum growth parameters for type-II infrared lasers , 1999 .

[39]  M. Mikhailova,et al.  Type II heterojunctions in the GaInAsSb/GaSb system , 1994 .

[40]  Zunger,et al.  Electronic structure and density of states of the random Al0.5Ga0.5As, GaAs0.5P0.5, and Ga0.5In0.5As semiconductor alloys. , 1991, Physical review. B, Condensed matter.