Endurance Testing of a Vibration Energy Harvester for Structural Health Monitoring

The Australian Defence Science and Technology Organisation (DSTO) is developing a variety of in-situ structural health monitoring (SHM) approaches for potential use in high value platforms across the Australian Defence Force (ADF). The implementation of SHM systems would allow the ADF to move from expensive interval based inspection and maintenance regimes for ageing platforms to more cost-effective condition-based approaches, and therefore reduce aircraft through - life support costs. One critical issue is determining the optimal means of supplying power to these in-situ SHM systems. To address this issue DSTO has developed a bi-axial vibration energy harvesting approach based on a vibrating spherical-mass, magnet and wire-coil transducer arrangement. It is important that the vibration energy harvesting devices themselves are resistant to fatigue and wear related damage as they may need to operate in service for many years. This paper examines work done on mitigating wear effects in vibration energy harvesting devices, with the goal of ensuring device longevity.