On posterior contraction of parameters and interpretability in Bayesian mixture modeling
暂无分享,去创建一个
[1] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[2] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[3] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[4] Albert Y. Lo,et al. On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .
[5] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[6] Cun-Hui Zhang. Fourier Methods for Estimating Mixing Densities and Distributions , 1990 .
[7] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[8] Jianqing Fan. On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .
[9] Jayaran Sethuramant. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[10] B. Leroux. Consistent estimation of a mixing distribution , 1992 .
[11] Jiahua Chen. Optimal Rate of Convergence for Finite Mixture Models , 1995 .
[12] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[13] B. Lindsay. Mixture models : theory, geometry, and applications , 1995 .
[14] P. Green,et al. Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .
[15] E. Gassiat,et al. The estimation of the order of a mixture model , 1997 .
[16] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[17] J. Ghosh,et al. POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .
[18] M. Stephens. Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .
[19] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[20] L. Wasserman,et al. Rates of convergence of posterior distributions , 2001 .
[21] Lancelot F. James,et al. Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions , 2001 .
[22] A. V. D. Vaart,et al. Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .
[23] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[24] Anil K. Jain,et al. Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[26] Judith Rousseau,et al. Nonasymptotic Bounds for Bayesian Order Identification with Application to Mixtures , 2005 .
[27] Te-Won Lee,et al. On the multivariate Laplace distribution , 2006, IEEE Signal Processing Letters.
[28] A. V. D. Vaart,et al. Misspecification in infinite-dimensional Bayesian statistics , 2006, math/0607023.
[29] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[30] A. Fearnside. Bayesian analysis of finite mixture distributions using the allocation sampler , 2007 .
[31] Agostino Nobile,et al. Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..
[32] S. Walker,et al. On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.
[33] Radford M. Neal,et al. Splitting and merging components of a nonconjugate Dirichlet process mixture model , 2007 .
[34] A. V. D. Vaart,et al. Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.
[35] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[36] C. Villani. Optimal Transport: Old and New , 2008 .
[37] A. Gelfand,et al. The Nested Dirichlet Process , 2008 .
[38] Kerrie Mengersen,et al. Mixtures: Estimation and Applications , 2011 .
[39] K. Mengersen,et al. Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .
[40] XuanLong Nguyen,et al. Posterior contraction of the population polytope in finite admixture models , 2012, ArXiv.
[41] S. Ghosal,et al. Adaptive Bayesian multivariate density estimation with Dirichlet mixtures , 2011, 1109.6406.
[42] X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.
[43] Eyke Hüllermeier,et al. On the bayes-optimality of F-measure maximizers , 2013, J. Mach. Learn. Res..
[44] Qiaozhu Mei,et al. Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis , 2014, ICML.
[45] Matthew T. Harrison,et al. Inconsistency of Pitman-Yor process mixtures for the number of components , 2013, J. Mach. Learn. Res..
[46] Catia Scricciolo. Adaptive Bayesian Density Estimation in $L^{p}$-metrics with Pitman-Yor or Normalized Inverse-Gaussian Process Kernel Mixtures , 2014 .
[47] Nhat Ho,et al. On strong identifiability and convergence rates of parameter estimation in finite mixtures , 2016 .
[48] Aad van der Vaart,et al. Posterior contraction rates for deconvolution of Dirichlet-Laplace mixtures , 2016 .
[49] Y. Ritov,et al. Robust estimation of mixing measures in finite mixture models , 2017, Bernoulli.
[50] XuanLong Nguyen,et al. Conic Scan-and-Cover algorithms for nonparametric topic modeling , 2017, NIPS.
[51] Jeffrey W. Miller,et al. Mixture Models With a Prior on the Number of Components , 2015, Journal of the American Statistical Association.
[52] J. Kahn,et al. Strong identifiability and optimal minimax rates for finite mixture estimation , 2018, The Annals of Statistics.
[53] Fangzheng Xie,et al. Bayesian Repulsive Gaussian Mixture Model , 2017, Journal of the American Statistical Association.
[54] M. Steel,et al. On choosing mixture components via non‐local priors , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).