A Lattice Boltzmann Model for Two-Phase Flow in Porous Media

In this paper, a lattice Boltzmann (LB) model with double distribution functions is proposed for two-phase flow in porous media where one distribution function is used for pressure governed by the Poisson equation, and the other is applied for saturation evolution described by the convection-diffusion equation with a source term. We first performed a Chapman-Enskog analysis, and show that the macroscopic nonlinear equations for pressure and saturation can be recovered correctly from present LB model. Then in the framework of LB method, we develop a local scheme for pressure gradient or equivalently velocity, which may be more efficient than the nonlocal second-order finite-difference schemes. We also perform some numerical simulations, and the results show that the developed LB model and local scheme for velocity are accurate and also have a second-order convergence rate in space. Finally, compared to the available pore-scale LB models for two-phase flow in porous media, the present LB model has more potential in the study of the large-scale problems.

[1]  Bastien Chopard,et al.  A lattice Boltzmann model for coupled diffusion , 2010, J. Comput. Phys..

[2]  Rong Chen,et al.  Mass transport phenomena in direct methanol fuel cells , 2009 .

[3]  H. C. Ottinger,et al.  Minimal entropic kinetic models for hydrodynamics , 2002, cond-mat/0205510.

[4]  Bo Yan,et al.  Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation , 2011, J. Sci. Comput..

[5]  Yalchin Efendiev,et al.  An adaptive local–global multiscale finite volume element method for two-phase flow simulations , 2007 .

[6]  Ned Djilali,et al.  An h-Adaptive Operator Splitting Method for Two-Phase Flow in 3D Heterogeneous Porous Media , 2013, SIAM J. Sci. Comput..

[7]  Mario Ohlberger,et al.  Convergence of a Mixed Finite Element - Finite Volume Method for the Two Phase Flow in Porous Media , 2009 .

[8]  J. J. Douglas,et al.  Finite Difference Methods for Two-Phase Incompressible Flow in Porous Media , 1983 .

[9]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[10]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[11]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[12]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[13]  D. d'Humières,et al.  Two-relaxation-time Lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions , 2008 .

[14]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method: Principles and Practice , 2016 .

[15]  Bastien Chopard,et al.  The lattice Boltzmann advection-diffusion model revisited , 2009 .

[16]  Aksel Hiorth,et al.  An improved lattice Boltzmann method for simulating advective-diffusive processes in fluids , 2017, J. Comput. Phys..

[17]  Bruce D. Jones,et al.  Multiphase lattice Boltzmann simulations for porous media applications , 2014, Computational Geosciences.

[18]  Z. Chai,et al.  A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media , 2016 .

[19]  Margot Gerritsen,et al.  MODELING FLUID FLOW IN OIL RESERVOIRS , 2005 .

[20]  Zhenhua Chai,et al.  A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations , 2016, J. Sci. Comput..

[21]  Igor Mozolevski,et al.  Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers , 2013, J. Comput. Appl. Math..

[22]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[23]  Yu-Shu Wu Multiphase Fluid Flow in Porous and Fractured Reservoirs , 2015 .

[24]  Veerle Cnudde,et al.  Imaging and image-based fluid transport modeling at the pore scale in geological materials : a practical introduction to the current state-of-the-art , 2016 .

[25]  Sam Bennett,et al.  A Lattice Boltzmann model for diffusion of binary gas mixtures , 2010 .

[26]  C. Shu,et al.  Lattice Boltzmann Method and Its Applications in Engineering , 2013 .

[27]  Zhenhua Chai,et al.  Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations. , 2016, Physical review. E.

[28]  Baochang Shi,et al.  Lattice Boltzmann model for nonlinear convection-diffusion equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[30]  Z. Chai,et al.  Lattice Boltzmann model for the convection-diffusion equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[32]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[33]  Moran Wang,et al.  Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. , 2006, Journal of colloid and interface science.

[34]  Renwei Mei,et al.  Boundary conditions for thermal lattice Boltzmann equation method , 2013, J. Comput. Phys..

[35]  Gretar Tryggvason,et al.  Direct Numerical Simulations of Gas–Liquid Multiphase Flows: Preface , 2011 .

[36]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[37]  A. Kukreti,et al.  A numerical model for simulating two-phase flow through porous media , 1989 .

[38]  W. Tao,et al.  A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications , 2014 .

[39]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[40]  Santosh Ansumali,et al.  Single relaxation time model for entropic lattice Boltzmann methods. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Weifeng Zhao,et al.  Single-node second-order boundary schemes for the lattice Boltzmann method , 2017, J. Comput. Phys..

[42]  Chao Yang,et al.  Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media , 2016, SIAM J. Sci. Comput..

[43]  K. Morgan,et al.  A finite element study of two-dimensional multiphase flow with particular reference to the five-spot problem , 1984 .

[44]  Jianhua Lu,et al.  General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Hiroaki Yoshida,et al.  Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation , 2010, J. Comput. Phys..

[46]  Zhenhua Chai,et al.  Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Sanjoy Banerjee,et al.  On the Three-Dimensional Central Moment Lattice Boltzmann Method , 2011, 1202.6081.

[48]  Zhangxin Chen,et al.  An Improved IMPES Method for Two-Phase Flow in Porous Media , 2004 .

[49]  Robert Eymard,et al.  Numerical Approximation of a Two-phase Flow Problem in a Porous Medium with Discontinuous Capillary Forces , 2006, SIAM J. Numer. Anal..

[50]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[51]  Zhenhua Chai,et al.  A Coupled Lattice Boltzmann Method to Solve Nernst–Planck Model for Simulating Electro-osmotic Flows , 2014, J. Sci. Comput..

[52]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  T. Zhao,et al.  Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries , 2017, Acta Mechanica Sinica.

[54]  Irina Ginzburg,et al.  Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations , 2005 .

[55]  Juntao Huang,et al.  Boundary conditions of the lattice Boltzmann method for convection-diffusion equations , 2015, J. Comput. Phys..

[56]  Wenwen Liu,et al.  A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection , 2013, J. Sci. Comput..

[57]  K. Luo,et al.  Lattice Boltzmann methods for multiphase flow and phase-change heat transfer , 2015, 1508.00940.

[58]  B. Wohlmuth,et al.  A two-scale operator-splitting method for two-phase flow in porous media , 2011 .

[59]  M. Blunt,et al.  Pore-scale imaging and modelling , 2013 .

[60]  I. Ginzburg Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation , 2005 .

[61]  Xiaoyi He,et al.  Lattice Boltzmann simulation of electrochemical systems , 2000 .

[62]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[63]  Rongzong Huang,et al.  A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation , 2014, J. Comput. Phys..

[64]  J. Korvink,et al.  Cascaded digital lattice Boltzmann automata for high Reynolds number flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Zhaoli Guo,et al.  Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media , 2016 .

[66]  R. Mei,et al.  Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9 , 2017 .