Covariance Tapering for Interpolation of Large Spatial Datasets
暂无分享,去创建一个
[1] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[2] A. Balakrishnan,et al. Spectral theory of random fields , 1983 .
[3] Phil Diamond,et al. Robustness of variograms and conditioning of kriging matrices , 1984 .
[4] Loren D. Pitt. SPECTRAL THEORY OF RANDOM FIELDS (Translation Series in Mathematics and Engineering) , 1984 .
[5] S. Yakowitz,et al. A comparison of kriging with nonparametric regression methods , 1985 .
[6] J. J. Warnes,et al. A sensitivity analysis for universal kriging , 1986 .
[7] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[8] Michael L. Stein,et al. Asymptotically Efficient Prediction of a Random Field with a Misspecified Covariance Function , 1988 .
[9] Mark S. Handcock,et al. Some asymptotic properties of kriging when the covariance function is misspecified , 1989 .
[10] Michael L. Stein,et al. Bounds on the Efficiency of Linear Predictions Using an Incorrect Covariance Function , 1990 .
[11] Michael L. Stein,et al. Uniform Asymptotic Optimality of Linear Predictions of a Random Field Using an Incorrect Second-Order Structure , 1990 .
[12] N. Cressie. The origins of kriging , 1990 .
[13] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[14] Barry W. Peyton,et al. Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .
[15] John R. Gilbert,et al. Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..
[16] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[17] Michael L. Stein,et al. A simple condition for asymptotic optimality of linear predictions of random fields , 1993 .
[18] Zongmin Wu,et al. Compactly supported positive definite radial functions , 1995 .
[19] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[20] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[21] Michael L. Stein,et al. Efficiency of linear predictors for periodic processes using an incorrect covariance function , 1997 .
[22] Holger Wendland,et al. Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .
[23] M. Stein. Predicting random fields with increasing dense observations , 1999 .
[24] T. Gneiting. Correlation functions for atmospheric data analysis , 1999 .
[25] Tilmann Gneiting,et al. Radial Positive Definite Functions Generated by Euclid's Hat , 1999 .
[26] S. Cohn,et al. Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .
[27] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[28] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[29] J. Whitaker,et al. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .
[30] R. Beatson,et al. Smooth fitting of geophysical data using continuous global surfaces , 2002 .
[31] Stephen Billings,et al. Interpolation of geophysical data using continuous global surfaces , 2002 .
[32] Michael L. Stein,et al. The screening effect in Kriging , 2002 .
[33] T. Gneiting. Compactly Supported Correlation Functions , 2002 .
[34] Craig J. Johns,et al. Infilling Sparse Records of Spatial Fields , 2003 .
[35] Roger Koenker,et al. SparseM: A Sparse Matrix Package for R , 2003 .
[36] Alexander Gribov,et al. Geostatistical Mapping with Continuous Moving Neighborhood , 2004 .
[37] Tilmann Gneiting,et al. Convolution roots of radial positive definite functions with compact support , 2004 .
[38] M. Fuentes,et al. Sensitivity of ecological models to their climate drivers: statistical ensembles for forcing. , 2006, Ecological applications : a publication of the Ecological Society of America.
[39] W. R. Madych,et al. An estimate for multivariate interpolation II , 2006, J. Approx. Theory.