The Smirnov class for spaces with the complete Pick property

We show that every function in a reproducing kernel Hilbert space with a normalized complete Pick kernel is the quotient of a multiplier and a cyclic multiplier. This extends a theorem of Alpay, Bolotnikov and Kaptanoglu. We explore various consequences of this result regarding zero sets, spaces on compact sets and Gleason parts. In particular, using a construction of Salas, we exhibit a rotationally invariant complete Pick space of analytic functions on the unit disc for which the corona theorem fails.

[1]  L. Carleson Interpolations by Bounded Analytic Functions and the Corona Problem , 1962 .

[2]  John E. McCarthy,et al.  Pick Interpolation and Hilbert Function Spaces , 2002 .

[3]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .

[4]  Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants , 2004 .

[5]  K. Davidson,et al.  Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras , 1998 .

[6]  C. Ambrozie,et al.  On an intertwining lifting theorem for certain reproducing kernel Hilbert spaces , 2002 .

[7]  Vladimír Müller,et al.  Spectral Theory of Linear Operators: and Spectral Systems in Banach Algebras , 2003 .

[8]  K. Davidson,et al.  Operator algebras for analytic varieties , 2012, 1201.4072.

[9]  S. Richter,et al.  Hankel operators, invariant subspaces, and cyclic vectors in the Drury-Arveson space , 2015 .

[10]  V. Paulsen,et al.  An Introduction to the Theory of Reproducing Kernel Hilbert Spaces , 2016 .

[11]  G. Harcos,et al.  The Institute for Advanced Study , 1933, Nature.

[12]  A Gleason–Kahane–Żelazko theorem for modules and applications to holomorphic function spaces , 2015, 1510.08128.

[13]  P. Quiggin For which reproducing kernel Hilbert spaces is Pick's theorem true? , 1993 .

[14]  P. Duren Theory of H[p] spaces , 1970 .

[15]  Factorization and reflexivity on Fock spaces , 1994, math/9404209.

[16]  S. W. Drury,et al.  A generalization of von Neumann’s inequality to the complex ball , 1978 .

[17]  WILLIAM H. ROWAN,et al.  Uniform Algebras , 2000 .

[18]  John E. McCarthy,et al.  Spaces of Dirichlet series with the complete Pick property , 2015, 1507.04162.

[19]  Jingbo Xia,et al.  Multipliers and essential norm on the Drury-Arveson space , 2010 .

[20]  P. Duren Theory of Hp Spaces , 2000 .

[21]  Michael Hartz On the Isomorphism Problem for Multiplier Algebras of Nevanlinna-Pick Spaces , 2015, Canadian Journal of Mathematics.

[22]  Helga Barbara Isselhard Mynott Composition Operators on Spaces of Analytic Functions , 1995 .

[23]  S. McCullough Caratheodory interpolation kernels , 1992 .

[24]  R. Rochberg Structure in the Spectra of Some Multiplier Algebras , 2014 .

[25]  Large Analytic Functions , 1990 .

[26]  William Arveson,et al.  Subalgebras ofC*-algebras III: Multivariable operator theory , 1997 .

[27]  B. Wick,et al.  The corona theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in $\C^n$ , 2008, 0811.0627.

[28]  N. Nikolski In search of the invisible spectrum , 1999 .

[29]  D. Alpay,et al.  The Schur algorithm and reproducing kernel Hilbert spaces in the ball , 2002 .

[30]  Z. Nehari Bounded analytic functions , 1950 .

[31]  Richard M. Timoney,et al.  Recent Advances in Operator-Related Function Theory , 2006 .

[32]  A. Shields WEIGHTED SHIFT OPERATORS AND ANALYTIC FUNCTION THEORY , 1974 .

[33]  J. Ball,et al.  Interpolation and Commutant Lifting for Multipliers on Reproducing Kernel Hilbert Spaces , 2001 .

[34]  A note on strictly cyclic weighted shifts , 1981 .

[35]  E. Kaniuth A Course in Commutative Banach Algebras , 2008 .

[36]  Donald E. Marshall,et al.  Interpolating Sequences for the Multipliers of the Dirichlet Space , 1994 .