An Evolutionary Metaheuristic for Approximating Preference-Nondominated Solutions

We propose an evolutionary metaheuristic for approximating the preference-nondominated solutions of a decision maker in multiobjective combinatorial problems. The method starts out with some partial preference information provided by the decision maker, and utilizes an individualized fitness function to converge toward a representative set of solutions favored by the information at hand. The breadth of the set depends on the precision of the partial information available on the decision maker's preferences. The algorithm simultaneously evolves the population of solutions out toward the efficient frontier, focuses the population on those segments of the efficient frontier that will appeal to the decision maker, and disperses it over these segments to have an adequate representation. Simulation runs carried out on randomly generated instances of the multiobjective knapsack problem and the multiobjective spanning-tree problem have found the algorithm to yield highly satisfactory results.

[1]  Murat Köksalan,et al.  Interactive Approaches for Discrete Alternative Multiple Criteria Decision Making with Monotone Utility Functions , 1995 .

[2]  T. Stewart A CRITICAL SURVEY ON THE STATUS OF MULTIPLE CRITERIA DECISION MAKING THEORY AND PRACTICE , 1992 .

[3]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[4]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[5]  Antreas D. Athanassopoulos,et al.  Dominance and potential optimality in multiple criteria decision analysis with imprecise information , 1997 .

[6]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[7]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[8]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[9]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[10]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[13]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[14]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..

[16]  Xavier Gandibleux,et al.  A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .

[17]  Jacques Teghem,et al.  An interactive heuristic method for multi-objective combinatorial optimization , 2000, Comput. Oper. Res..

[18]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..