Conformal and Non-conformal Adaptive Mesh Refinement with Hierarchical Array-based Half-Facet Data Structures☆
暂无分享,去创建一个
Xiangmin Jiao | Vijay S. Mahadevan | Rebecca Conley | Xinglin Zhao | Navamita Ray | X. Jiao | V. Mahadevan | Navamita Ray | Xinglin Zhao | Rebecca Conley
[1] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[2] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[3] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[4] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[5] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[6] Timothy J. Tautges,et al. MOAB : a mesh-oriented database. , 2004 .
[7] David Andrs,et al. Arbitrary-level hanging nodes for adaptive hp-FEM approximations in 3D , 2014, J. Comput. Appl. Math..
[8] Francis Y. Enomoto,et al. THE CGNS SYSTEM , 1998 .
[9] M. Rivara,et al. A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .
[10] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[11] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[12] Wolfgang Bangerth,et al. Data structures and requirements for hp finite element software , 2009, TOMS.
[13] David Bommes,et al. OpenVolumeMesh - A Versatile Index-Based Data Structure for 3D Polytopal Complexes , 2012, IMR.
[14] Ivo Dolezel,et al. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..
[15] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[16] Randolph E. Bank,et al. PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.
[17] Ivo Babuška,et al. A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .
[18] Xiangmin Jiao,et al. Compact Array-Based Mesh Data Structures , 2005, IMR.
[19] Eberhard Bänsch,et al. Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..
[20] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.
[21] Pavel Kus,et al. Hermes2D, a C++ library for rapid development of adaptive hp-FEM and hp-DG solvers , 2014, J. Comput. Appl. Math..
[22] Mark T. Jones,et al. Adaptive refinement of unstructured finite-element meshes , 1997 .
[23] F. Bornemann,et al. Adaptive multivlevel methods in three space dimensions , 1993 .
[24] Timothy J. Tautges,et al. AHF: array-based half-facet data structure for mixed-dimensional and non-manifold meshes , 2015, Engineering with Computers.
[25] Barry Joe,et al. Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..
[26] R. Bank,et al. Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .
[27] Benjamin S. Kirk,et al. Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .
[28] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .