Conformal and Non-conformal Adaptive Mesh Refinement with Hierarchical Array-based Half-Facet Data Structures☆

We present a generalization of the Array-based Half-Facet (AHF) mesh data structure, called Hierarchical AHF, for hierarchical unstructured meshes generated from adaptive mesh refinement for solving PDEs. This data structure extends the AHF data structure (V. Dyedov, et al. AHF: Array-based Half-Facet Data Structure for Mixed-Dimensional and Non-manifold Meshes) to support meshes with hierarchical structure, which often are generated from adaptive mesh refinement (AMR). The design goals of our data structure include generality to support efficient neighborhood queries, refinement and derefinement, and hp-FEM with mesh smoothing. Our data structure utilizes the sibling half-facets as a core abstraction, coupled with a tree structure for hierarchical information. To facilitate the interoperability of mesh based applications, auxiliary data will be designed on top of Hierarchical AHF. We describe the data structure and software requirements, and present numerical experiments to demonstrate its effectiveness.

[1]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[4]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[5]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[6]  Timothy J. Tautges,et al.  MOAB : a mesh-oriented database. , 2004 .

[7]  David Andrs,et al.  Arbitrary-level hanging nodes for adaptive hp-FEM approximations in 3D , 2014, J. Comput. Appl. Math..

[8]  Francis Y. Enomoto,et al.  THE CGNS SYSTEM , 1998 .

[9]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[10]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[11]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[12]  Wolfgang Bangerth,et al.  Data structures and requirements for hp finite element software , 2009, TOMS.

[13]  David Bommes,et al.  OpenVolumeMesh - A Versatile Index-Based Data Structure for 3D Polytopal Complexes , 2012, IMR.

[14]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[15]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[16]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[17]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .

[18]  Xiangmin Jiao,et al.  Compact Array-Based Mesh Data Structures , 2005, IMR.

[19]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[20]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[21]  Pavel Kus,et al.  Hermes2D, a C++ library for rapid development of adaptive hp-FEM and hp-DG solvers , 2014, J. Comput. Appl. Math..

[22]  Mark T. Jones,et al.  Adaptive refinement of unstructured finite-element meshes , 1997 .

[23]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[24]  Timothy J. Tautges,et al.  AHF: array-based half-facet data structure for mixed-dimensional and non-manifold meshes , 2015, Engineering with Computers.

[25]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[26]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[27]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[28]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .