Energy in the small: Integrated micro-scale energy sources

Embedded energy sources are a key enabler for applications with limited or no physical access to external energy supplies. For nanomorphic micron-scale systems, such as integrated analytical microsystems, implantable diagnostics, and drug delivery devices, the available volume for on-board energy supplies is very limited. Thus, the capacity of an energy supply, both in terms of energy stored and the rate at which it can deliver energy, can place severe constraints on system design. This chapter investigates fundamental scaling limits for a variety of micron-sized energy sources, which include the galvanic and fuel cells, the supercapacitor, and radioisotope sources. Further, it is sometimes possible to directly harvest energy from the surrounding environment when the delivery of the energy can be either unintentional or directed. In the unintentional category, energy sources might include ambient electromagnetic, solar, vibration, fluid flows, thermal gradients, etc. An overview of the energy available for harvesting from a variety of sources is also provided.

[1]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[2]  Adam Heller,et al.  Potentially implantable miniature batteries , 2006, Analytical and bioanalytical chemistry.

[3]  R. Duggirala,et al.  Pervasive power: a radioisotope-powered piezoelectric generator , 2005, IEEE Pervasive Computing.

[4]  Nae-Lih Wu,et al.  Electrochemical Capacitor of MnFe2O4 with NaCl Electrolyte , 2005 .

[5]  Nae-Lih Wu,et al.  Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide , 2003 .

[6]  Bozidar Marinkovic,et al.  Smart Sand—a wide bandwidth vibration energy harvesting platform , 2009 .

[7]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[8]  A. Lal,et al.  Self-reciprocating radioisotope-powered cantilever , 2002 .

[9]  H. S. Osborne,et al.  The international electrotechnical commission , 1953, Electrical Engineering.

[10]  Amit Lal,et al.  Silicon-on-insulator cantilevers as charge collectors for radioisotope micropower sources: design, fabrication and characterization , 2006 .

[11]  Mingui Sun,et al.  Passing data and supplying power to neural implants , 2006, IEEE Engineering in Medicine and Biology Magazine.

[12]  Srinivasan Sampath,et al.  Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors , 2007 .

[13]  E. Oliva,et al.  High-Voltage GaAs Photovoltaic Laser Power Converters , 2009, IEEE Transactions on Electron Devices.

[14]  Nae-Lih Wu,et al.  Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2 ∙ nH2O Supercapacitors in Aqueous Electrolytes , 2006 .

[15]  Daniel J. Inman,et al.  Recharging Batteries using Energy Harvested from Thermal Gradients , 2007 .

[16]  Adam Heller,et al.  Ionic conduction in Zn3(PO4)2.4H2O enables efficient discharge of the zinc anode in serum. , 2005, Journal of the American Chemical Society.

[17]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[18]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[19]  Kun-Hong Lee,et al.  Flexible micro-supercapacitors , 2006 .

[20]  David M. Wilt,et al.  InGaP alpha voltaic batteries: Synthesis, modeling, and radiation tolerance , 2006 .

[21]  Satoshi Kawata,et al.  An implantable power supply with an optically rechargeable lithium battery , 2001, IEEE Transactions on Biomedical Engineering.

[22]  J. D. Robertson,et al.  Demonstration of a radiation resistant, high efficiency SiC betavoltaic , 2006 .

[23]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[24]  H. Hess,et al.  Caged ATP-fuel for bionanodevices , 2005, IEEE Transactions on Advanced Packaging.

[25]  N. Mano,et al.  Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. , 2003, Journal of the American Chemical Society.

[26]  S. Tajima,et al.  Aluminium and manganese as anodes for dry and reserve batteries , 1984 .

[27]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[28]  Adam Heller,et al.  A miniature biofuel cell operating at 0.78 V. , 2003, Chemical communications.

[29]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[30]  Elzbieta Frackowiak,et al.  Supercapacitors based on carbon materials and ionic liquids , 2006 .

[31]  A. Lewandowski,et al.  Practical and theoretical limits for electrochemical double-layer capacitors , 2007 .

[32]  T. Zdanowicz,et al.  Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations , 2005 .

[33]  C. Van Hoof,et al.  Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes , 2007, IEEE Sensors Journal.

[34]  Roland Zengerle,et al.  Energy harvesting by implantable abiotically catalyzed glucose fuel cells , 2008 .

[35]  I.R. Abothu,et al.  Processing and Dielectric Properties of Nanocomposite Thin Film “Supercapacitors” for High-Frequency Embedded Decoupling , 2007, IEEE Transactions on Components and Packaging Technologies.

[36]  L. Mats,et al.  Powering autonomous cubic-millimeter devices , 2006, IEEE Antennas and Propagation Magazine.

[37]  R. Cavin,et al.  Research directions and challenges in nanoelectronics , 2006 .

[38]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[39]  David P. Arnold,et al.  Process development and material characterization of polycrystalline Bi2Te3, PbTe, and PbSnSeTe thin films on silicon for millimeter-scale thermoelectric generators , 2008 .

[40]  Uwe Hansmann,et al.  Pervasive Computing , 2003 .

[41]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[42]  R. Duggirala,et al.  4H SiC betavoltaic powered temperature transducer , 2007 .

[43]  David Sinton,et al.  Microfluidic fuel cells: A review , 2009 .

[44]  Claude A. Klein,et al.  Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors , 1968 .

[45]  J C Norman,et al.  Nuclear-fueled cardiac pacemakers. , 1974, Chest.

[46]  Peter Kauffman,et al.  Development of a seawater battery for deep-water applications , 1997 .

[47]  A. Heller Miniature biofuel cells , 2004 .

[48]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[49]  N. Miki,et al.  Gastric-fluid-utilizing micro battery for micro medical devices , 2008 .

[50]  V. M. Balebanov,et al.  Secondary-emission radioisotopic current source , 1998 .

[51]  E. J. Casey,et al.  On the possible use of titanium and its alloys and compounds as active materials in batteries. A review , 1978 .

[52]  L. Poirier,et al.  Are metals dietary carcinogens? , 1999, Mutation research.

[53]  Dennis Hohlfeld,et al.  Harvesting mechanical energy for ambient intelligent devices , 2009, Inf. Syst. Frontiers.

[54]  Kun-Hong Lee,et al.  Fabrication of microcapacitors using conducting polymer microelectrodes , 2003 .