Structure–properties relationship in TRIP steels containing carbide-free bainite

The purpose of the present contribution is to review the current knowledge about the relationship between the micro-structure of cold rolled intercritically annealed low alloy TRIP-aided sheet steels and their mechanical properties from a materials engineering point of view. The focus is on their production in existing industrial lines and on their application in the manufacture of passenger cars with a body-in-white which offers an improved passive safety. The review aims to make clear that although low alloy TRIP-aided sheet steel is by now starting to be an established structural material in BIW manufacturing, there is still room for the further optimization of the composition and the processing. In addition, there are still a number of problems related to their physical metallurgy that require a better fundamental understanding.

[1]  L. Kestens,et al.  Hot rolling texture development in CMnCrSi dual-phase steels , 2002 .

[2]  Tsutomu Iida,et al.  Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel , 2000 .

[3]  Gregory B Olson,et al.  Kinetics of strain-induced martensitic nucleation , 1975 .

[4]  B. C. Cooman,et al.  Phase transformation and mechanical properties of si-free CMnAl transformation-induced plasticity-aided steel , 2002 .

[5]  G. Haidemenopoulos,et al.  Modelling of austenite stability in low-alloy triple-phase steels , 1996 .

[6]  B. Verlinden,et al.  COMPARISON OF THE EFFECTS OF SILICON AND ALUMINIUM ON THE TENSILE BEHAVIOUR OF MULTIPHASE TRIP-ASSISTED STEELS , 2001 .

[7]  K. Sugimoto,et al.  X-Ray Residual Stress and Strain-Induced Transformation of Retained Austenite in TRIP-Aided Dual-Phase Steels. , 1995 .

[8]  F. Delannay,et al.  The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels , 2001 .

[9]  B. C. De Cooman,et al.  Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel , 2002 .

[10]  H. Bhadeshia,et al.  Bainite in Steels , 2019 .

[11]  Les Erasmus,et al.  Modelling of Manganese Partitioning in Dual Phase Steel during Annealing , 2000 .

[12]  G. Ghosh,et al.  Simulation of paraequilibrium growth in multicomponent systems , 2001 .

[13]  D. Matlock,et al.  Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation , 1992 .

[14]  Y. Bréchet,et al.  The role of carbon on the kinetics of bainite transformation in steels , 2002 .

[15]  K. Conlon,et al.  Characterization of the metastable austenite in low-alloy FeCMnSi TRIP-aided steel by neutron diffraction. , 2002 .

[16]  L. Cretteur,et al.  Improvement of weldability of TRIP steels by use of in‐situ pre‐ and post‐heat treatments , 2002 .

[17]  Patricia Verleysen,et al.  Physical Metallurgy of Multi‐Phase Steel for Improved Passenger Car Crash‐Worthiness , 2004 .

[18]  M. Rappaz,et al.  Modelling of reaustenitization from the pearlite structure in steel , 1998 .

[19]  W. Bleck,et al.  Experimental determination of the stability of retained austenite in low alloy TRIP steels , 1999 .

[20]  B. D. Cooman,et al.  Amplitude-dependent internal friction of dislocation interactions in dual-phase steel , 2003, International Journal of Materials Research.

[21]  Kiyotaka Nakano,et al.  Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels , 2002 .

[22]  Hiroshi Takechi,et al.  Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel , 1987 .

[23]  Günter Wassermann,et al.  Untersuchungen an einer Eisen-Nickel-Legierung über die Verformbarkeit während der γ-α-Umwandlung , 1937 .

[24]  H. Bhadeshia Some phase transformations in steels , 1999 .

[25]  D. Matlock,et al.  Color tint-etching for multiphase steels , 2003 .

[26]  H. Bhadeshia,et al.  Acceleration of Low-temperature Bainite , 2003 .

[27]  G. Haidemenopoulos,et al.  Simulation of intercritical annealing in low-alloy TRIP steels , 2000 .

[28]  D. Matlock,et al.  Application of the Quenching and Partitioning (Q&P) Process to a Medium-Carbon, High-Si Microalloyed Bar Steel , 2003 .

[29]  S. Zwaag,et al.  Stabilization mechanisms of retained austenite in transformation-induced plasticity steel , 2001 .

[30]  C. Mesplont,et al.  Effect of austenite deformation on crystallographic texture during transformations in microalloyed bainitic steel , 2003 .

[31]  S. Vandeputte,et al.  Static strain aging phenomena in cold-rolled dual-phase steels , 2003 .

[32]  O. Matsumura,et al.  Retained Austenite in 0.4C-Si-1.2Mn Steel Sheet Intercritically Heated and Austempered , 1992 .

[33]  L. Kestens,et al.  Texture development in cold rolled and annealed C-Mn-Si and C-Mn-Al-Si TRIP steels , 2001 .

[34]  B. C. De Cooman,et al.  The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels. , 1999 .

[35]  S. Zwaag,et al.  Theoretical Study of P-Containing Transformation-Induced Plasticity Steel – Part 1: Determination of the Phosphorus Concentration , 2001 .

[36]  W. Bleck,et al.  Sheet metal forming behaviour and mechanical properties of TRIP steels , 1999 .

[37]  H. Bhadeshia,et al.  Bainite transformation kinetics Part 1 Modified model , 1992 .

[38]  H. C. Chen,et al.  Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet , 1989 .

[39]  D. V. Dooren,et al.  Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification. , 2002 .

[40]  M. Hillert,et al.  Overview no. 38: On the nature of the bainite transformation in steels , 1984 .

[41]  B. C. De Cooman,et al.  Galvanisability of silicon free CMnAl TRIP steels , 2003 .

[42]  D. Matlock,et al.  Carbon partitioning into austenite after martensite transformation , 2003 .

[43]  A. Pichler,et al.  TRIP steel with reduced silicon content , 1999 .

[44]  H. Bhadeshia,et al.  The bainite transformation in a silicon steel , 1979 .

[45]  B. C. De Cooman,et al.  Galvanizability of high-strength steels for automotive applications , 2001 .

[46]  Sunghak Lee,et al.  Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold-rolled steel sheets , 2001 .

[47]  O. Matsumura,et al.  Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-O.8Mn Steel , 1987 .